
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4080  | https://doi.org/10.1038/s41598-021-83204-1

www.nature.com/scientificreports

Multivariate spatio‑temporal 
approach to identify vulnerable 
localities in dengue risk areas using 
Geographic Information System 
(GIS)
Gayan P. Withanage1, Malika Gunawardana2, Sameera D. Viswakula3, 
Krishantha Samaraweera4, Nilmini S. Gunawardena1 & Menaka D. Hapugoda1*

Dengue is one of the most important vector‑borne infection in Sri Lanka currently leading to vast 
economic and social burden. Neither a vaccine nor drug is still not being practiced, vector controlling 
is the best approach to control disease transmission in the country. Therefore, early warning systems 
are imminent requirement. The aim of the study was to develop Geographic Information System 
(GIS)‑based multivariate analysis model to detect risk hotspots of dengue in the Gampaha District, 
Sri Lanka to control diseases transmission. A risk model and spatial Poisson point process model 
were developed using separate layers for patient incidence locations, positive breeding containers, 
roads, total buildings, public places, land use maps and elevation in four high risk areas in the district. 
Spatial correlations of each study layer with patient incidences was identified using Kernel density and 
Euclidean distance functions with minimum allowed distance parameter. Output files of risk model 
indicate that high risk localities are in close proximity to roads and coincide with vegetation coverage 
while the Poisson model highlighted the proximity of high intensity localities to public places and 
possibility of artificial reservoirs of dengue. The latter model further indicate that clustering of dengue 
cases in a radius of approximately 150 m in high risk areas indicating areas need intensive attention in 
future vector surveillances.

Dengue is an arthropod-borne viral infection found the throughout tropical and subtropical regions of the world. 
Based on publish literatures, World Health Organization (WHO) estimates that about 390 million dengue virus 
infections occurs every year of which 96 million manifest  clinically1,2. The infection has spread over 128 countries 
globally while 3.9 billion people are at risk and approximately 70% of the incidences are reported from  Asia3.

Dengue is the most important vector-borne emerging and re-emerging infectious disease in Sri Lanka at 
present. The first serologically confirmed dengue incidence was reported in Sri Lanka in 1962 followed by an 
increase in the number of dengue incidences over the  time4. The first dengue epidemic was reported in the 
country in 1989 and since then, dengue was considered to be endemic in the country and periodic dengue fever 
(DF) and dengue hemorrhagic fever (DHF) epidemics progressively occurred with increased  magnitude5. In 
Sri Lanka, more than 30,000 dengue cases have been reported to the Epidemiology Unit of Ministry of Health 
since 2010 while more than half of the cases reported in the Western Province. The second highest prevalence 
of dengue is observed in the Gampaha District in the Western province over 10  years6. The largest dengue epi-
demic in Sri Lanka was reported in 2017 with a total of 186,101 dengue incidences. Moreover, this is considered 
as the worst mosquito-borne virus infection in the South Asian  countries7. During the peak of the epidemic in 
July, 2017, the highest number of incidences were reported from the Gampaha  District6. In the absence of an 
effective drug or vaccine specific to the dengue virus (DENV), source reduction is the best method to control 
transmission of dengue. In addition to conventional vector surveys, chemical control methods such as selec-
tive indoor residual insecticide spraying and insecticide treated nets (ITNs) were currently using to control the 
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disease  transmission8. Recently, an autocidal gravid ovitrap have been developed using Novaluron as the active 
ingredient to control the dengue transmission in the  district9. Thermal fogging is using in Sri Lanka as the last 
option in vector control methods with portable or vehicle mounted fog generators. Even though, ideally fogging 
should be implemented every 2–3 days for 10 days, fogging is repeated within 7–10 days after initial spraying in 
Sri  Lanka10. Organophosphates and synthetic pyrethroid insecticides were using national-wide in fogging since 
Sri Lanka has history a history of extensive use of DDT which has already led higher resistance in dengue vector 
mosquito  species11. Deltamethrin, Lambda-cyhalothrin, Malathion, Permathrin, and d,d,trans-cyphenothrin 
are currently using in aerosol applications and fogging Sri  Lanka12.

In recent years, health authorities directed their attention toward development of early warning systems to 
reduce disease transmission rates in high risk areas. Predictive risk maps, developed using Geographical Infor-
mation System (GIS)-based approaches and spatial statistical analysis, may provide an alternative approach to 
identify risk localities assessing and quantifying the distribution of risk factors to predict impending dengue 
 epidemics13. Further, GIS-based risk maps can be used to understand the mosquito distribution, seasonal climatic 
variations and environmental factors affecting transmission of  dengue14,15.

Currently, GIS-based risk predictive models are not available yet for the Gampaha District to assess to identify 
risk localities and these models are needs of the moment to control dengue transmission. Therefore, the objective 
of the present study is to analyse spatial and seasonal distribution of dengue incidence and ecological factors 
to develop GIS-based risk model for the identification of risk localities in high-risk areas in order to control 
dengue transmission. The outcome of the study will probably improve the effectiveness of dengue surveillance 
programmes, ultimately controlling impending dengue epidemics in the district.

Results
Risk maps were prepared to identify both the risk areas in the Gampaha District and distribution of dengue 
incidences and risk factors in the selected dengue high risk study areas.

Identification of risk localities in areas with high risk using the developed GIS‑based 
model. The WGS 84 / UTM zone 44 N georeferenced layers were used for the development of GIS-based 
model and the developed model was utilized to identify the risk localities in the dengue high risk study areas in 
the Gampaha District. The final outcomes of the model for each study area were depicted in Fig. 1. The compari-
sons of model outputs with the satellite images of respective high risk areas were illustrated in the Supplementary 
Figs. S1–S4.

Identifications of spatial correlations between different layers with patient locations in each 
dengue high risk study area in the Gampaha District. A random point layer was generated by intro-
ducing 100 random points for each study area separately. The generated random point layer was used to extract 
spatial distances for each study raster and spatial correlations were analysed using the Pearson’s product correla-
tion  coefficient16. The results of the correlations were summarized in the Table 1.

During the mathematical modelling of patient locations of dengue in the study areas using Poisson point pat-
tern models, different point pattern intensities were predicted for dengue incidences in the study areas (Fig. 2). 
Further, coefficients obtained for the each variables in study areas were summarized in Table 2. The developed 
equations for each study area are available in Supplementary Table S1.

During the modelling, base intensity (Intercept) and total building were significant in all areas. Further, land 
uses were significant in Eriyawetiya and Welikadamulla study areas while public places were significant in Akbar 
Town as well as Eriyawetiya study areas.

According to the observed Ripley’s K-functions (Fig. 3), in Eriyawetiya and  3rd Kurana study areas, dengue 
incidences were clustered at some scales and be dispersed at others. Significant clustering is detected within a 
radius of approximately 155 m and 125 m in Eriyawetiya and  3rd Kurana study areas, respectively and dispersion 
is observed afterwards.

Identification of distribution of dengue incidences in the study high risk areas in different 
monsoon periods. In each study area, the dengue incidences were clustered depending on the monsoon 
periods and mapped separately to identify the distribution of dengue incidences in the study areas. In the study, 
the highest number of dengue incidences were reported during the south-west monsoon period. Figure 4 illus-
trated the heat maps of distribution of dengue incidences in the south-west monsoon period in the study areas. 
Distribution of dengue incidences in different monsoon periods in each study area were illustrated in the Sup-
plementary Figs. S5–S8.

Discussion
Present study aimed to develop a risk model to identify the risk localities in the dengue high risk areas. Kernel 
density and Euclidean distance based approaches are widely used in raster development of GIS modelling. Kernel 
density was used to fit a smoothly tapered surface to point layers while Euclidean distance was used to identify 
close exposures of polygon  layers17. The risk values were ranked for each layer depending on their contribution to 
the transmission of dengue incidences. Based on the ILWIS Applications  Guide18, the maximum risk value for the 
developed model was assigned as 10. Previous study conducted on mathematical modelling of dengue incidences 
in the Gampaha District have stated exponential influence of previous month cases on current month disease 
transmission in the  district19. Further, investigation on adult and immature stages of dengue vector mosquitoes 
indicated that DENV are present in adult dengue vector mosquitoes and significant correlations of entomological 
indices with patient cases in the same  district20,21. Therefore, patient locations and positive breeding container 
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layers were selected as maximum risk variables and assigned the risk value of 10 as these variables are directly 
involved in disease transmission. In the modelling, dispersed risk distance patient cases and breeding places 
were selected less than average flight distance of dengue vector mosquitoes which is  400m22. Further, these study 
areas are considered to be highly congested areas and therefore, total building and home garden layers were given 
second highest ranking. Previous study conducted in Indonesia reported that consistent high number of dengue 
cases in larger areas of buildings even though the correlation is  weak23. Further, higher dengue vector population 
densities were reported around home gardens from many  countries24–26. Therefore, moderate risk level, risk value 
of 6, was assigned to total buildings and home garden layers. Recent study conducted in the Gampaha District 
demonstrated the contribution of daily commutes of people for transmission of dengue in the  district27. When 
people visited to urban areas, there is higher probability of acquiring of dengue as these urban and suburban 
areas may act as dengue hot spots and artificial reservoirs which has been documented previously in Sri Lanka 

Figure 1.  Generated risk map for the study areas. High risk localities were illustrated in the dark green colour 
while the low risk localities were illustrated in white. Road maps were overlapped in the respective area. Satellite 
imagery comparisons were illustrated in Supplementary Figures S1–S4. Risk maps were composed using Esri 
ArcGIS 10.2.1.
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Table 1.  Spatial correlations between generated layers with dengue incident location layer in each dengue high 
risk study area in the multivariate Poisson point process model. *Significantly correlated layers with dengue 
incidences during the study period. A 5% significance level was used to identify significant correlations. N/A-
Urban areas are not included in the land use maps of  3rd Kurana study area.

Study layer

Correlations in each study area

Eriyawetiya Akbar Town 3rd Kurana Welikadamulla

Positive breeding locations 0.04 0.14 0.16 0.36*

Contour  − 0.03 0.15 0.18  − 0.16

Roads 0.03 0.34* 0.27* 0.45*

Total buildings  − 0.02  − 0.43*  − 0.10  − 0.44*

Public places 0.04  − 0.38*  − 0.07  − 0.35*

Land use-urban areas 0.11  − 0.01 N/A 0.21*

Land use-home gardens  − 0.05  − 0.18 0.16  − 0.45*

Land use-marshy lands 0.08  − 0.15 0.16  − 0.18

Figure 2.  Predicted point pattern intensity for dengue incidences in the respective study areas. High risk 
localities were illustrated in the yellow colour while the low risk localities were illustrated in the blue. Variation 
of intensity levels are scaled adjacently to the intensity map of the study areas. (A) Eriyawetiya; (B) Akbar Town; 
(C)  3rd Kurana; (D) Welikadamulla.
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as well as other  countries28–31. Therefore, land use layer for urban areas was given third highest ranking in the 
risk model. Another study conducted in Sri Lanka reported roads are important aspects for transmission of 
 dengue25 and households in the present study areas located along main roads or have access roads. Further, 
previous study in Sri Lanka reported the potentials of public places play as artificial reservoirs  dengue32 because 
of higher prevalence of breeding places around public places. It is a well-known fact that distribution of dengue 
vector mosquitoes varies with the elevation depending on geographical areas. Therefore, roads, public places 
and elevation layers were ranked in the third position with risk level of 4. However, the lower risk distances were 
assigned to road and contour layers as the layers are not related directly for transmission of the disease even 
though they play important role. Previous study conducted in Kenya and Uganda has reported higher dengue 
vector mosquito populations close to vegetation and marshy  lands33 which may provide resting places of dengue 
vectors, especially for male mosquitos. When considering the study areas, with the exception of the  3rd Kurana 
study area, all other study areas have close proximity to marshy areas and therefore these areas were included 
as a variable in the present study. Since it is not directly involving in mosquito population increase or disease 
transmission, the lowest rank was assigned to marshy areas of land use layers.

When comparing the generated risk maps with satellite imageries, vegetation covers were observed in high 
risk localities in all study areas. The reason could be the vegetation covers make better resting places for dengue 
vector mosquitoes. Even though the Ae. aegypti mosquitoes, the main vector of DENV, rest  indoors34, previous 
studies conducted in Malaysia and Kenya reported the preference of Ae. aegypti to rest and breed outdoors due 

Table 2.  Coefficients obtained by the Poisson point process modelling for the variables in different high risk 
study areas. *Significantly correlated layers with patient locations in respective Poisson point process models. 
Standard errors have indicated within parentheses. A 5% significance level was used to identify significant 
correlations. N/A-Urban areas are not included in the land use maps of  3rd Kurana study area.

Eriyawetiya Akbar Town 3rd Kurana Welikadamulla

(Intercept) 8.811 (0.568)* 6.918 (1.424)* 5.029 (2.422)* 6.21 (1.162)*

Positive breeding locations  − 0.001 (0.001)  − 0.001 (0.001)  − 0.001 (0.001) 0 (0)

Roads  − 0.032 (0.007)*  − 6.677 (20.863) 5.483 (26.222) 28.572 (15.57)

Total buildings  − 0.076 (0.009)*  − 0.108 (0.025)*  − 0.093 (0.015)*  − 0.072 (0.015)*

Land use-home gardens 0.081 (0.022)*  − 0.015 (0.008)  − 0.922 (9.0683)  − 0.019 (0.005)*

Land use-marshy lands  − 0.004 (0.001)*  − 0.004 (0.004) 0.002 (0.001) 0.006 (0.002)*

Land use-urban areas  − 0.0001 (0)* 0.002 (0.002) N/A 0.003 (0.001)*

Public places  − 0.004 (0.001)*  − 0.006 (0.003)*  − 0.002 (0.002)  − 0.002 (0.001)

Contour 0.043 (0.022) 0.001 (0.082) 0.185 (0.441)  − 0.224 (0.249)

Figure 3.  Observed Ripley’s K-functions and simulated envelopes for Poisson point process models in the study 
areas. r—The vector of values of the argument r at which the function K has been estimated; K̂—The estimates 
of K(r) ; obs—Observed values of the summary function for the dengue patient location data pattern; lo—Lower 
envelope of simulations; hi—Higher envelope of simulations.
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to increased breeding opportunities without affecting lifespan or gonotrophic  activity35,36. Meanwhile, it is well-
known fact that Ae. albopictus, the subsidiary vector of DENV, prefers vegetation to rest and breeding in both 
natural and man-made  containers37,38.

When comparing the intensity maps generated from the Poisson point process model with generated risk 
maps, differences in localization of intensities were observed specially in Eriyawetiya and Welikadamulla study 
areas. In the risk map of Eriyawetiya study area, risk localities were located mainly along the roads in the area 
and this observation was even statistically significant in Pearson correlation analysis. However, when considering 
the intensity map from the Poisson point process model, lower predicted intensity was observed in most of the 
locations in the study area and high intensities were observed around the southern border along the Devasu-
mithrarama road and in central area. When considering the Welikadamulla study area, even though risk map 
indicates that dengue is high virtually all over the area, the predicted intensity map illustrates that dengue may 
high in central and northern border of the area along the Welikadamulla road. Interestingly, while the dengue 
high intensity localities in both Eriyawetiya and Welikadamulla study areas are mainly used as home gardens, 
these localities have close proximity to crowded public places, such as schools, temples, community halls, etc. 
Perhaps, these public places may have acted as artificial reservoirs of dengue. This is further observation in the 
high density localities in Akbar Town and  3rd Kurana study areas. In the Akbar Town area, high intensities were 
observed around mosques. In the  3rd Kurana study area, many public places, such as schools and churches, are 
located in the central and southern area where intensities were high. However, the lowest dengue intensities were 
observed from the  3rd Kurana study area.

In the Poisson point process model, highest intensity range was observed in the Eriyawetiya study area 
while the lowest was observed from  3rd Kurana. Eriyawetiya study area is located close to the northern border 
of Colombo, the commercial capital in Sri Lanka, where highest number of dengue cases are reported in the 
 country39. Recent study reported that human commutes to risk areas in Colombo and transportations may play 
significant role transmission of dengue in the nearby areas, such as Eriyawetiya study area, leading to higher 
 intensities21. However, the overall lowest intensities reported from  3rd Kurana study area may be due to con-
tinuous encouragement of dwellers in the area to remove dengue vector mosquito breeding places and use of 
protective measures by the churches and clergies.

The results of Pearson correlation analysis and Poisson multivariate point process model were also different 
especially with respect to positive breeding locations and roads layers. Positive correlation was observed between 
breeding places and patient locations in Pearson correlation analysis, which can be expected as dengue vector 
mosquitoes are anthropophilic mosquitoes with low flying ranges, were different from the results of Poisson point 
process model. In the model, no or negative correlation was observed between patient locations and breeding 

Figure 4.  Distribution of dengue incidences in south-west monsoon period in the study areas. (A) Eriyawetiya; 
(B) Akbar Town; (C)  3rd Kurana; (D) Welikadamulla. Distribution of dengue incidences in different monsoon 
periods in the study areas were illustrated in Supplementary Figs. S5–S8. Figure was generated using Esri 
ArcGIS 10.2.1.
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places. In a multivariate model, all explanatory variables are modelled to capture the true variation of the response 
variable while in Pearson correlation only one explanatory variable is considered at a time. The negative cor-
relation in Poisson model with breeding places may be due to the hidden breeding places. These breeding places 
may be unidentified due to level of personal expertise, restrictions of accessibility to household, limitations due 
to inadequate resources, etc. which lead to differences between actual adult population and larval  indices21. 
Further, even though road layers were shown similar behaviours for  3rd Kurana and Welikadamulla study areas 
both in Pearson correlations and Poisson modelling, differences were observed in Eriyawetiya and Akbar Town. 
The positive correlations observed between patient locations and road layers could probably be because of high 
congestion of households alongside the roads and therefore, even single DENV infected mosquitos can spread 
the disease to all households as these mosquitoes probe many humans during blood feeding. Similar observation 
has been reported in previous study conducted in West  Indies40. The study further states that more dengue cases 
being found within 1–3 km away from various types of roads. This may be the reason for the observed negative 
estimates from multivariate Poisson model in Eriyawetiya and Akbar Town study areas as the patient locations 
are very close to access roads.

When analysing the observed K -functions of the developed Poisson multivariate models for the study areas, 
both clustering and dispersions were observed for Eriyawetiya and  3rd Kurana study areas while only clustering 
was observed in the Akbar Town and Welikadamulla areas. Interestingly, in Eriyawetiya and  3rd Kurana study 
areas, clustering was observed a radius of approximately 150 m. This is comparable to the general flying range of 
dengue vector mosquitoes, especially with regards to the Ae. aegypti41, the main dengue vector mosquito. Further, 
this may be an indicative of that patients in a small areal cluster are prompted due to a single infected dengue 
vector mosquito. During the analysis, both  isotropic42 and  translation43 edge correction methods were consid-
ered, therefore, edge effects arising from the unobserved patient locations outside study area can be hampered 
when estimating the K-functions. The estimations of K-functions were within the upper and lower envelopes 
of simulated functions in Akbar Town,  3rd Kurana and Welikadamulla study areas, that is, given particular dis-
tance, the data and simulated patterns were statistically equivalent. This indicates that dengue patient locations 
in the study areas were undergone a complete random pattern or CSR except for Eriyawetiya study area. This 
observation is further confirmed by the results of Maximum Absolute Deviation (MAD) and the Diggle-Cressie-
Loosmore-Ford (DCLF) non-graphical  tests44.

Among four monsoon seasons, the first inter-monsoon season occurs during March and April months. The 
Southwest monsoon period starts in May and it lasts till September. During the October and November, the 
second inter-monsoon period occurs and the Northeast monsoon lasts for three months from December to 
February. When analysing the distribution of dengue incidences in the monsoon periods, the highest number of 
dengue incidences were reported from the Southwest monsoon period in all study areas. The Gampaha District 
is located in the western part of Sri Lanka and during the monsoon period, the district experiences a rainfall of 
750–2000 mm. In other monsoon periods, rainfall of the Gampaha District is less than 1000  mm45. The reason 
for higher precipitation in the Southwest monsoon period includes the presence of abundant water bodies, such 
as Arabian Sea and Indian Ocean, leading to higher accumulation of moisture in Southwest monsoon  winds46. 
The higher rainfalls increase not only the availability of the breeding containers for dengue vector mosquitoes, 
but also favourable environmental conditions, viz. humidity and temperature, for its development. This will lead 
to increased disease transmission during the Southwest monsoon season compared to other monsoon seasons.

The developed models can be used to identify risk localities easily for healthcare workers and decision makers. 
The Poisson point process models can be developed using freely available software and packages. Further, road 
maps can be easily obtained for freely available sources and modified easily using freely available GIS software. 
With the advantages of technology, correct GPS locations of positive dengue vector mosquito breeding places 
and patients can be easily obtained using mobile devices with minimum wage during vector control programmes 
and export directly into GIS software. Since roads, land use, buildings and contour being not changing frequently 
in a particular area, with the aid of available data on patient locations as well as positive breeding places, it is 
possible to develop risk maps monthly or biannually to assess the risk levels of high risk areas. Further, when 
health authorities have risk map of particular area over few years, then it is possible to identify risk localities 
and transmission of dengue in an area in advance. This is particularly important in outbreaks and epidemic 
progression, so that they can have a better scenario of undergone situation to use scarce health resources effec-
tively to control disease transmission. Meantime, the model can be further enhanced by incorporating serotype 
data which may lead identify index cases and initial clusters. A combined approach of predictive mathematical 
 models19 and genetic approaches to identify the virulence of circulating dengue  viruses21 will provide sufficient 
information for health authorities to take timely actions, such as intensive source reduction programmes, targeted 
intervention programmes or deploy vector reduction tools such as  ovitraps9, to manage the situation to prevent 
propagation of outbreaks and epidemics.

Conclusions
The developed GIS-based model can be utilized easily to identify risk localities at early stage in high risk areas 
which is not available yet in the Gampaha District as well as in Sri Lanka. In the high risk areas of current study, 
clustering of dengue incidences were observed at a radius of 150 m. The output of the developed model can be 
used as an early warning tool to explore and identify the current situation of dengue in an area providing valu-
able insights for healthcare authorities to understand disease propagation patterns and allocate scarce public 
health resources effectively to prevent impending dengue outbreaks and epidemics. When the GIS-based model 
coupled with mathematical modelling and phologenetic approaches, it will probably illustrate better scenario 
of present situation dengue outbreaks in real-time in risk areas. When these model apply over a large area or at 
national level in time-series manner, transmission patterns of dengue may be identified easily.
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Methods
Study area. The Gampaha District, expands over 1387  km2, is located near the Northern border of the Dis-
trict of Colombo. Gampaha District is the second most populated district in Sri Lanka. Fifteen Medical Officer 
of Health (MOH) areas, sectioned into 106 Public Health Inspector (PHI) areas and 1177 Grama Niladhari (GN) 
divisions with 1784 villages are located in the  district47. Previous study conducted on the mathematical model-
ling of dengue incidences with meteorological variables reported that the Kelaniya, Wattala and Negombo MOH 
areas were being with highest dengue prevalence in the  district19 and these MOH areas together with Mahara 
MOH area, where a moderate risk area which has close proximity to Kelaniya and Wattala MOH areas were 
selected for the current study. The highest number of dengue incidences reported GN division of each selected 
MOH area was selected as the study areas of the present study (Supplementary Fig. S9).

Data collection. The baseline map for Sri Lanka was obtained from the Survey Department of Sri Lanka as 
a shapefile. GIS-based models were prepared to develop risk maps with the aim of identification of risk areas in 
study sites. During the development of risk models, locations of patients and positive breeding containers were 
collected using consumer grade GPS receivers for all study areas from January, 2014 to June, 2018. The shapefile 
for GN division boundary maps for the Gampaha District were downloaded from the Survey Department of Sri 
Lanka and land use maps for the study areas were collected from the Land Use Policy Planning Department, Sri 
Lanka as separate shapefiles. The 1:10,000 digital elevation maps for the Gampaha District was obtained from 
the Survey Department.

Development of GIS‑based model. Geographical information system-based models and risk maps were 
developed using entomological, environmental/ecological and social factors affecting transmission of dengue 
for the Gampaha District using ArcGIS 10.2 software (ESRI Inc., USA) and layer creations and transformations 
were performed using the QGIS 2.18-Long-term Release (LTR), QGIS Development Team).

GIS-based risk models were prepared to identify the risk areas and factors in the study areas in the Gampaha 
District. Separate layers were developed representing locations of dengue patients and positive breeding con-
tainers of Aedes dengue vector mosquitoes, roads, land use, total buildings, public places and elevations in each 
study area. The schematic structure of the underlined model is illustrated in Fig. 5.

Georeferencing and projection transformations. An image of MOH areas in the Gampaha District was georef-
erenced to develop the MOH area map of the district and saved as separate shapefile and transformed into Uni-
versal Transverse Mercator (UTM) zone 44 N (EPSG:32644) coordinate  system48. The GPS readings on patient 
locations and positive breeding places were converted to UTM coordinate system (EPSG:32644) prior to saving 
as separate layers for each study area. Building and public places layers for each study area were created based on 
satellite imageries of USGS  EarthExplorer49 and verified using Google Maps. Road maps for the study areas were 
developed based on the maps available at  OpenStreetMap50 and verified using Google Earth. Separate shapefiles 
were created for urban areas, homesteads and marshy lands using the land use files for each study area. The digi-
tal elevation maps was clipped to extract the elevation levels of the study areas. All generated shapefiles for each 
study area were transformed into UTM zone 44 N coordinate system prior to model building.

Development of GIS‑based model to generate risk maps to identify dengue risk in the study areas. The develop-
ment process of the GIS-based model for study areas were summarized in the Supplementary Fig. S10. Raster 
layers were developed separately for patient data, breeding places and road maps layers using the kernel density 
function. The Euclidean Distance function was used to generate raster layers for different land uses, buildings 
and public places. Raster layers were developed for contour layer using the ‘Topo to Raster’ function. Based on 
previous  literature51, risk values were assigned prior to assigned (Table 3).

Identification of correlations between patient cases with developed layers in the study areas. Spatial correlations 
of each layer to patient cases were studied by introducing specified number of random point features to the study 

Figure 5.  Systematic flow chart of risk model development.
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area layer. Minimum Allowed Distance parameter was then calculated to each raster using the random point 
layer. The distances calculated for ‘patient density’ raster was considered as the dependent variable and distances 
calculated for each layer were considered as explanatory variables. Pearson correlation was performed to identify 
significantly correlated layers.

Mathematical modelling of patient cases with developed layers in the study areas. Spatial Poisson point process 
model was fitted considering patient locations as a function of developed raster layers developed from breeding 
places, road maps, different land uses, buildings and public places layers. The analysis was performed in R sta-
tistical  software52 using raster53 and spatstat54 packages for study areas. All the spatial objects were rescaled into 
kilometres prior to modelling. The equation for the model was:

where �(i) is the modelled point pattern intensity for dengue incidences at location i in the study area, α is the 
base intensity derived from the multivariate model and β1 to β8 are the estimated coefficients for each respective 
variable.

Upon developing, model outputs were plotted as predicted intensity of dengue in the areas to identify high-
risk localities. Further, clustering pattern was also estimated using K-functions (Eq. 2)55, for the developed models 
in each study area, of 1000 pointwise Monte Carlo simulated realisations of Complete Spatial Randomness (CSR) 
with both isotropic and translation edge corrections.

where a is the size of the study area, n is the number of data points, and the sum is taken over all ordered pairs 
of points i and j in X. Here d[i, j] is the distance between the two points, and I(d

[
i, j
]
≤ r) is the indicator that 

equals I if the distance is less than or equal to r . The term e[ij] is the edge correction weight.

Development of heat maps to identify the distribution of dengue incidences with climate 
seasons. Sri Lanka experiences four climate seasons annually. The distribution of dengue incidences in the 
study areas were mapped separately in order to identify the distribution patterns of dengue incidences for each 
climatic season in the study areas. Heat maps were developed using the density tool for point data in ArcGIS 
software with output cell size of 10  m56. The number of dengue incidences reported during different climatic 
seasons was used to identify seasonal variations of dengue incidences in the study areas during the study period.
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