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Paper: Transformability

Cosmological constant in gravitational lensing

Consider the Schwarzschild de Sitter Metric,
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The constant term is recognized as the Schwarzschild radius (r, ), and typically it is replaced by a
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constant term2m where m = > I, = —— and then the equation (1) can be written as follows.
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A is the cosmological constant.

The null-geodesic equation in Schwarzschild-de Sitter metric can be written as,
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where E is the energy, | is the orbital angular momentum, A is the cosmological constant, U =—and
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Differentiating (3) with respectto¢,
u'(u”+u—-3mu®)=0. (4)

Neglecting the solution,u’ =0 which implies u = constant, the equation of a light ray trajectory can be
written as,

u”+u=3mu’. (5)

The zeroth order solution and the first order solution of the equation (5) that represent the light ray
trajectory are respectively given below.
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where & =3m.

In general, in the literature, it is assumed that (7) is a solution of equation (3) without considering the
limitations imposed. In this paper we discuss conditions under which (7) is a solution of equation (3).

Now the orbital angular momentum, | = pr, where p is the linear momentum.
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Therefore,
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Substituting (7) and (8) in (3), we have,
E? 1 2 S 2¢ |
—-1° ——sin¢+—gzsin¢cos¢ —1? —COS¢—i2COSZ¢+—82
c r 3r, r, 3r, 3r, -
3 2
$ 2802 lCOS(/ﬁ—izcoszgéJrz—g2 +£:0.
3 r 3r, 3r, 3

By simplifying the above equation and since | = O we obtain the following equation,
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From (10) it is clear that the solution given by (7) of equation (3) is valid only if A is a constant of order
m?, and as we neglect terms of order 2 and above we are justified in assuming (7) as a solution of equation
(3). However, it turns out that this particular solution is valid only if A is a constant of order 2 or more in
m. If A is a non zero constant and of order one in m, the solution (7) is not valid and we have to seek
other solutions.
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