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4.26 Simple theorem on the integral roots of special class of prime 
degree polynomial equations 

R.A.D.Piyadasa 
Department of Mathematics, University ofKelaniya 

ABSTRACT 

Even in case of a simple polynomial x3 + l5xb + 28 = 0 ,  where (3, b) = 1 , it may be 
extremely difficult to discard the integral solutions without knowing the number b exactly .In this case, one can make use of the method of Tartaglia and Cardan 

[Archbold J.W.1961] and its solutions can be written as u + v,Ul:o + vw2 ,uw2 + vw, 

where u3, v3 are the roots of the equation x2 + 28x -125b3 = 0, and {J) is the cube root 
I 

. . [-28 ± .J282 + 500b3 
J
3 

of umty .Also, u or v can be wntten as 2 and this expression is 

obviously zero only when b = 0. Therefore if b :f. 0 , it is very difficult to determine that 
I 

k [-28±.J282+500b3J3. . 
Th h 'lib I' d · h = 

2 
IS an mteger or not . e t eorem w1 e exp rune m t e 

. following , is Capable of discarding all integral solutions of this equation using only one 
condition (3, b) = 1 . The theorem in its naive form discards all integral solutions of the 

polynomial . xP + pbx-cP = 0, where p is a prime and (p,b) = (p,c) = 1 
Theorem 
xP + pbx-cP = 0 has no integral solutions if (p,b) = (p,c) = 1 , where b,c are any 

integers and p is any prime . 
Proof 
Proof of the theorem is based on the following lemma 

Lemma 
If (a,p) = (b,p) = 1, and ifs= aP-bP is divisible by p , then p2 dividess. This is 

true even when s = a P + bP and p is odd. 
Proof of the Lemma 
s=aP-a-(bP-b)+a-b and since s is divisible by p and aP-a ,bP-bare 
divisible by p due to Fermat's little theorem, it follows that a-b is divisible by p. 
aP -bP= (a-b)[(ap-l -bP-1)+b(aP-2 -bP-2)+ .. ·+bP-3(a-b)+ pbP-1)] (1) 

From ( 1 ), it follows that s is divisible by p2 • Proof of the lemma for a P +bP is almost 
the above. It is well known that the equation 

xP + pbx-cP = 0 (2) 
has either integral or irrational roots. 
If this equation has an integral root l, let x = l and (p,l) = 1. Then , l P -cP + pbl = 0. 
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From the Lemma, it follows that p2 I CF - cP) .Therefore pI b ,  and this is a 
contradiction. Therefore equation has no integral roots which are not divisible by p .If it 

has an integral solution which is divisible by p ,  then let x=pf3k,(p, k)=l. Then we 

have, (p/3 k)P + pbp/3 k- cP = 0 ,and hence pI c ,which is again a contradiction 
since(p, c) = 1 which completes the proof. 
As an special case of the theorem , consider the equation 

x3 + 15xb + 28 = 0 (3) 
which can be written as 

x3 +1+15xb+33 =0 (4) 
and it is clear that this equation has no integral root l = O(mod 3) since 1 is not divisible 
by 3. If this equation has an integral root k which is not divisible by 3 , then 
k3 + 1 + 15kb + 32 = 0 from which it follows that 31 b due to the Lemma(in case of 

negative c )  and is a contradiction . Therefore the equation has no integral roots. In case 
of p = 2 , it follows from the theorem that the equation 

x2 - 2bx- q2 =0 
where (2, q) = 1 = (2, b) 'has no integral roots. Again from the theorem it follows that 

x P - pcx - p f3p a P - bP = 0 , where (p, c) = 1 = ( b, p) and p is a prime, has no integral 

solutions .. In particular here, p f3p a 3, bP are two components o( F ermat triples. It is easy 
to deduce that this equation has no integral roots. This theorem may hold for some other 
useful forms of polynomial equations. 
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