4.23 A metric which represents a sphere of constant uniform density comprising electrically counterpoised dust

N.A.S.N. Wimaladharma ${ }^{*}$, Nalin de Silva

Department of Mathematics, University of Kelaniya

> ABSTRACT
> Following the authors who have worked on this problem such Bonnor et.al ${ }^{1,2}$, Wickramasuriya ${ }^{3}$ and we write the metric which represents a sphere of constant density $\rho=\frac{1}{4 \pi}$, with suitable units, as
> $d s^{2}=\frac{1}{(\theta(r))^{2}} c^{2} d t^{2}-(\theta(r))^{2}\left(d r^{2}+r^{2} d \Omega^{2}\right)$
> $d s^{2}=\frac{1}{\left(D+\frac{B}{R}\right)^{2}} c^{2} d T^{2}-\left(D+\frac{B}{R}\right)^{2}\left(d R^{2}+R^{2} d \Omega^{2}\right) \quad 0 \leq r \leq a$
where $d \Omega^{2}=\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \quad \theta(r)$ is the Emden function satisfying the Emden equation ${ }^{4}$ with $n=3$. Since the metric has to be Lorentzian at infinity, we can take $D=1$. However, there is an important difference between the above authors and us as they had taken the same coordinate r in both regions, and as a result $A=a$. In general these coordinates do not need to be the same. In this particular case the coefficients of $d \Omega^{2}$ are not of the same form in the above two metrics and that forces us to take two different coordinates r and R. In our approach $r=a$ in the matter-filled region corresponds to $R=A$ in the region without matter.
Applying the boundary conditions at $r=a$ or $R=A$, we have,

$$
\begin{align*}
& \frac{1}{\theta(a)} c d t=\frac{1}{\left(1+\frac{B}{A}\right)} c d T \\
& \Rightarrow \frac{d t}{d T}=\frac{\theta(a)}{\left(1+\frac{B}{A}\right)} \tag{i}\\
& \frac{-2}{(\theta(a))^{3}} \theta^{\prime}(a) c d t=\frac{-2}{\left(1+\frac{B}{A}\right)^{3}}\left(-\frac{B}{A^{2}}\right) c d T \\
& \Rightarrow \frac{d t}{d T}=\frac{-B(\theta(a))^{3}}{A^{2} \theta^{\prime}(a)\left(1+\frac{B}{A}\right)^{3}} \tag{ii}\\
& \theta(a) d r=\left(1+\frac{B}{A}\right) d R \quad \Rightarrow \frac{d r}{d R}=\frac{\left(1+\frac{B}{A}\right)}{\theta(a)}
\end{align*}
$$

$$
\begin{equation*}
\theta(a) a=\left(1+\frac{B}{A}\right) A \tag{iv}
\end{equation*}
$$

\qquad

From (i) and (ii), we have $\frac{\theta(a)}{\left(1+\frac{B}{A}\right)}=\frac{-B(\theta(a))^{3}}{A^{2} \theta^{\prime}(a)\left(1+\frac{B}{A}\right)^{3}}$

$$
\begin{equation*}
B=-\frac{A^{2}\left(1+\frac{B}{A}\right)^{2} \theta^{\prime}(a)}{(\theta(a))^{2}} \tag{v}
\end{equation*}
$$

\qquad
From (iv), $\frac{\left(1+\frac{B}{A}\right)}{\theta(a)}=\frac{a}{A}$ (vi)

Using equation (vi) in equation (v), we have $B=-A^{2}\left(\frac{a^{2}}{A^{2}}\right) \theta^{\prime}(a)=-a^{2} \theta^{\prime}(a)$.
Substituting the value of B in equation (iv), $\theta(a) a=\left(1+\frac{B}{A}\right) A=A+B$

$$
\begin{gathered}
=A-a^{2} \theta^{\prime}(a) \\
\Rightarrow A=a \theta(a)+a^{2} \theta^{\prime}(a) .
\end{gathered}
$$

Then the metric becomes

$$
\begin{array}{ll}
d s^{2}=\frac{1}{(\theta(r))^{2}} c^{2} d t^{2}-(\theta(r))^{2}\left(d r^{2}+r^{2} d \Omega^{2}\right) & 0 \leq r \leq a \\
d s^{2}=\frac{1}{\left(1-\frac{\left(a^{2} \theta^{\prime}(a)\right)}{R}\right)^{2}} c^{2} d T^{2}-\left(1-\frac{\left(a^{2} \theta^{\prime}(a)\right)}{R}\right)^{2}\left(d R^{2}+R^{2} d \Omega^{2}\right) & A<R
\end{array}
$$

where $A=\left(a \theta(a)+a^{2} \theta^{\prime}(a)\right)$

References

1. Bonnor W.B and Wickramasuriya S.B.P, Int.J.Theor.Phys.5,371(1972).
2. Bonnor W.B and Wickramasuriya,Mon.Not.R.Astr.Soc.170,643(1975).
3. Wickramasuriya S.B.P PhD. Thesis, University of London.(1972).
4. R.Emden, Gaskugelin, Berlin and Leipzig(1907).
