4.24 A general relativistic solution for the space time generated by a spherical shell with constant uniform density

N.A.S.N. Wimaladharma ${ }^{*}$, Nalin de Silva

Department of Mathematics,University of Kelaniya

Abstract

In this paper we present a general relativistic solution for the space time generated by a spherical shell of uniform density. The Einstein's field equations are solved for a distribution of matter in the form of a spherical shell with inner radius a and outer radius b and with uniform constant density ρ.

We first consider the region which contains matter ($a<r<b$). As the metric has to be spherically symmetric we take the metric in the form $d s^{2}=e^{\nu} c^{2} d t^{2}-e^{\lambda} d r^{2}-r^{2} d \Omega^{2}$, where $d \Omega^{2}=\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right), \lambda$ and v are functions of r as in Adler, Bazin and Schiffer ${ }^{1}$ where the space time metric for a spherically symmetric distribution of matter in the form of sphere of uniform density has been worked out.

Solving the field equations, we obtain

$$
e^{\lambda}=\frac{1}{\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)} \quad \text { and } e^{\nu}=\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)\left(A+\frac{B}{2} \int \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)^{3 / 2}} d r\right)^{2}
$$

Here $R^{2}=\frac{3 c^{2}}{8 \pi \kappa \rho}$, where c and κ are the velocity of the light and the gravitational constant respectively and A, B and E are constants to be determined.

Let the metric for the matter free regions be $d s^{2}=e^{v} c^{2} d t^{2}-e^{\lambda} d r^{2}-r^{2} d \Omega^{2}$, where as before from spherical symmetry λ and ν are functions of r.

Solving the field equations, we obtain, e^{λ} and $e^{\prime \prime}$ in the form
$e^{\lambda}=\frac{1}{\left(1+\frac{G}{r}\right)}$ and $\quad e^{v}=D\left(1+\frac{G}{r}\right)$, for the regions $0<r<a$, and $r>b$. where D and G are constants.

For the region $0<r<a$, when $r=0$, the metric should be regular. So $G=0$. Hence the metric for the region $0<r<a$ is $d s^{2}=D c^{2} d t^{2}-d r^{2}-r^{2} d \Omega^{2}$.

For the region $r>b$, the metric should be Lorentzian at infinity. So $D=1$. Hence the metric for the exterior matter free region is
$d s^{2}=\left(1+\frac{G}{r}\right) c^{2} d t^{2}-\frac{1}{\left(1+\frac{G}{r}\right)} d r^{2}-r^{2} d \Omega^{2}$.
Then we can write the metric for the space-time as

$$
\begin{aligned}
& d s^{2}=D c^{2} d t^{2}-d r^{2}-r^{2} d \Omega^{2} \quad \text {, when } 0<r<a, \\
& d s^{2}=\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)\left(A+\frac{B}{2} \int \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)^{3 / 2}} d r\right)^{2} c^{2} d t^{\prime 2}-\frac{1}{\left(1-\frac{r^{2}}{R^{2}}+\frac{E}{r}\right)} d r^{2}-r^{2} d \Omega^{2}, \\
& \quad \text { when } a \leq r \leq b, \text { and } \\
& d s^{2}=\left(1+\frac{G}{r}\right) c^{2} d t^{2}-\frac{1}{\left(1+\frac{G}{r}\right)} d r^{2}-r^{2} d \Omega^{2}, \quad \text { when } r>b .
\end{aligned}
$$

Applying the boundary conditions at $r=a$ and $r=b$, we have

$$
E=\frac{a^{3}}{R^{2}}, \quad G=\frac{-\left(b^{3}-a^{3}\right)}{R^{2}},
$$

$$
\begin{equation*}
A=\frac{\left(b^{3}-a^{3}\right)\left(\frac{R^{2}}{3}-\left.\frac{1}{2} \int \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)^{3 / 2}} d r\right|_{r=a}\right)}{\left(\frac{b^{3} R^{2}}{\left(1-\frac{b^{2}}{R^{2}}+\frac{a^{3}}{R^{2} b}\right)^{1 / 2}}-\left(2 b^{3}+a^{3}\right)\left(\frac{R^{2}}{3}+\frac{1}{2} \int_{a}^{b} \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)^{3 / 2}} d r\right)\right)} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
B=\frac{\left(b^{3}-a^{3}\right)}{\left(\frac{b^{3} R^{2}}{\left(1-\frac{b^{2}}{R^{2}}+\frac{a^{3}}{R^{2} b}\right)^{1 / 2}}-\left(2 b^{3}+a^{3}\right)\left(\frac{R^{2}}{3}+\frac{1}{2} \int_{a}^{b} \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)^{3 / 2}} d r\right)\right.} \tag{ii}
\end{equation*}
$$

where

$$
\begin{aligned}
& \int \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)^{3 / 2}} d r=\frac{2\left(a^{3}-r^{3}+r R^{2}\right)^{2}\left(-9 a^{6} \sqrt{r}-3 a^{3} r^{3 / 2} R^{2}+2 r^{5 / 2} R^{4}\right)}{r^{2 / 3}\left(\frac{a^{3}-r^{3}+r R^{2}}{r R^{2}}\right)^{3 / 2}\left(-27 a^{9}+27 a^{6} r^{3}-27 a^{6} r R^{2}+4 a^{3} R^{6}-4 r^{3} R^{6}+4 r R^{6}\right)} \\
& +\frac{1}{r^{2}\left(\frac{a^{3}-r^{3}+r R^{2}}{r R^{2}}\right)^{3 / 2}\left(27 a^{6}-4 R^{6}\right)}\left(2\left(a^{3}-r^{3}+r R^{2}\right)^{3 / 2} \sqrt{a^{3}+r^{3}\left(-1+\frac{R^{2}}{r^{2}}\right)}\right) \\
& +\frac{1}{\left(\frac{a^{3}-r^{3}+r R^{2}}{r R^{2}}\right)}\left(a^{3} \sqrt{\frac{\left(-\frac{1}{r}+r_{2}\right)\left(\frac{1}{r}-r_{3}\right)\left(r_{1}-r_{3}\right)}{\left(r_{2}-r_{3}\right)^{2}\left(r_{1}-r_{3}\right)}}(F(\phi / m))+\left(9 a^{3}+2 R^{4} r_{1}\right)\right. \\
& \left.\left.\left.\left.+2 R^{4} E(\phi / m)\left(-r_{1}+r_{3}\right)\right)\right)\right)\right) .
\end{aligned}
$$

$F(\phi / m)=\int_{0}^{\phi}\left(1-m \sin ^{2} \theta\right)^{-1 / 2} d \theta \quad$ and $E(\phi / m)=\int_{0}^{\phi}\left(1-m \sin ^{2} \theta\right)^{1 / 2} d \theta,-\frac{\pi}{2}<\phi<\frac{\pi}{2}$ are the Elliptic integrals of first kind and second kind respectively, where

$$
\phi=\operatorname{Arcsin}\left[\sqrt{\frac{\left(-\frac{1}{r}+r_{3}\right)}{\left(r_{3}-r_{2}\right)}}\right] \quad \text { and } \quad m=\frac{\left(r_{2}-r_{3}\right)}{\left(r_{1}-r_{3}\right)} .
$$

Here $r_{1}=$ The first root of $\left(-1+R^{2} r^{2}+a^{3} r^{3}\right)$.
$r_{2}=$ The second root of $\left(-1+R^{2} r^{2}+a^{3} r^{3}\right)$.
$r_{3}=$ The third root of $\left(-1+R^{2} r^{2}+a^{3} r^{3}\right)$.

Furthermore we know that the potential ϕ of a shell of inner radius a_{1} and outer radius b_{1} and constant uniform density in Newtonian gravitation is given by

$$
\begin{array}{ll}
\phi=2 \pi \kappa \rho\left(a_{1}^{2}-b_{1}^{2}\right) & 0<r<a_{1} \\
\phi=\frac{2 \pi \kappa \rho}{3} r^{2}+\frac{4 \pi \kappa \rho}{3 r} a_{1}^{3}-2 \pi \kappa \rho b_{1}^{2} & a_{1} \leq r \leq b_{1} \\
\phi=-\frac{4 \pi \kappa \rho}{3 r}\left(a_{1}^{3}-b_{1}^{3}\right) & b_{1}<r
\end{array}
$$

Using the fact that $g_{00} \cong\left(1+\frac{2 \phi}{c^{2}}\right)$, (for example in Adler, Bazin and Schiffer ${ }^{1}$)we find that the constants a_{1}, b_{1} in Newtonian gravitation and D can be written in the form

$$
\begin{gathered}
\left.\left.a_{1}=a\left(\frac{\left(b^{3}-a^{3}\right) / 3}{\left.\frac{b^{3}}{\left(1-\frac{b^{2}}{R^{2}}+\frac{a^{3}}{R^{2} b}\right)^{1 / 2}}-\frac{\left(2 b^{3}+a^{3}\right)}{3}\right)^{2 / 3}}\right)^{2 / 3}\right)^{2}\right)^{1 / 2} \\
b_{1}=R \sqrt{\frac{2}{3}}\left(1-\left(\frac{\left(b^{3}-a^{3}\right) / 3}{\left(1-\frac{b^{2}}{R^{2}}+\frac{a^{3}}{R^{2} b}\right)^{1 / 2}}-\frac{\left(2 b^{3}+a^{3}\right)}{3}\right)\right. \\
D=\left(1+\frac{3\left(a_{1}^{2}-b_{1}^{2}\right)}{2 R^{2}}\right) .
\end{gathered}
$$

Hence the final form of the metric is

$$
\begin{aligned}
& d s^{2}=\left(1+\frac{3\left(a_{1}{ }^{2}-b_{1}^{2}\right)}{2 R^{2}}\right) c^{2} d t^{2}-d r^{2}-r^{2} d \Omega^{2} \quad \therefore \quad 0<r<a \\
& d s^{2}=\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)\left(A+\frac{B}{2} \int \frac{r}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)^{3 / 2}} d r\right)^{2} c^{2} d t^{\prime 2}-\frac{1}{\left(1-\frac{r^{2}}{R^{2}}+\frac{a^{3}}{R^{2} r}\right)} d r^{2}-r^{2} d \Omega^{2} \\
& a \leq r \leq b \\
& d s^{2}=\left(1-\frac{\left(b^{3}-a^{3}\right)}{R^{2} r}\right) c^{2} d t^{2}-\frac{1}{\left(1-\frac{\left(b^{3}-a^{3}\right)}{R^{2} r}\right)} d r^{2}-r^{2} d \Omega^{2} \quad b<r .
\end{aligned}
$$

where A, B, a_{1} and b_{1} are given by the equations (i), (ii), (iii) and (iv) respectively.

References

1. Adler R., Bazin M., and Schiffer M., Introduction to General Relativity, McGraw-Hill Inc, New York (1965).
