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ABSTRACT 

Sum of the squares of the Bessel function and the Neumann function of the same 
order of half-odd integer has been found to be very useful in addressing a puzzle in 
nuclear physics. One approximate formula available in the literature is valid for the 
complex argument whose real part is greater than zero, and the absolute value of error 
term is undefined for half-odd integers. Another approximate formula which is valid 
for all complex arguments has been obtained using sophisticated mathematical method 
called Barnes' method. However, the error in the formula is very difficult to calculate. 
We have obtained exact formula for the sum of the squares of Bessel and Neumann 
functions of the same order of half-odd integers which is valid for all complex 
arguments, and its proof is also given.   
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INTRODUCTION 

In case of elastic scattering of neutrons on composite nuclei, it has been found 
(Kawai & Iseri, 1985) that the S-matrix element becomes zero for a special 
combination of energy (E), orbital angular momentum ( l ), total angular momentum (j) 
and composite target nuclei (A). This phenomenon is called anomalous absorption of 
neutron partial waves by the nuclear optical potential. This phenomenon occurs is case 
of elastic proton scattering on composite target nuclei (Iseri & Kawai, 1986) and it has 
been found (Piyadasa, 1985) that this phenomenon is universal for light ion elastic 
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scattering on composite nuclei. Anomalous absorption of partial waves of light ion 
scattering shows striking systematic in varies parameter planes. For example, angular 
momenta corresponding to partial waves absorbed lie on straight lines in the parameter 
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,  in case of neutron elastic scattering. The partial wave ljU  of angular 

momentum l  satisfies the relation, 
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for a zero of S-matrix element, where k is the incident wave number and r is the radial 
distance between the projectile and the target nucleus. ( )krjl  and  ( )krlη  stand for 

the spherical Bessel function and the spherical Neumann function respectively.   
In finding the origin of systematic of the anomalous absorption of neutron partial 

waves by the nuclear optical potential, we have found that exact formula for the sum 
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 is very important, where
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J  and 
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N  stand for  Bessel function and Neumann 

function respectively. Only approximate formulae are available in the literature for
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One approximate formula for )()( ZNZJ
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+   has been given (Watson, 1944) 

which is valid for 0)Re( >Z . However, its validity for all complexes Z is conjectured 

(Grad Shteyn & Ruzhik, 1980). Another one has been derived (Watson, 1944) using 
the sophisticated mathematical method called Barnes’ method which is valid for all 
complex Z, but the error term is supposed to be very difficult to estimate. 

We have obtain  exact formula for the sum of the square of the Bessel function 
and the Neumann function of the  same order of half odd integer which is valid for all 
complex Z, and its proof is given in the next section. 

 
  MATERIALS AND METHODS 

In this section, the proof of the formula is given using the method of 
mathematical induction. 

The following five formulae have been proved for all integral n and complex z 
(Watson, 1944). 



Extract formula for the sum of the squares 
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Theorem: For all Cz∈  and +∈ Zn , 
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where ( 1!)!12 =−k  when .0=k  

Proof: From (6), when  n = 0,  
z

zNzJ
π
222

2
1

2
1 =+ )()(  

and when  n = 1,  ⎟
⎠
⎞

⎜
⎝
⎛ +=+ 2

22 112
2
3

2
3 zz

zNzJ
π

)()( . 

From (1),  for  n = 0,  
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and putting i−  in place of i ,  we get 
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and putting i−   in place of i , we get,  
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Thus, (6) holds for  n = 0 and 1. 
 
Assume the result is true for  pn ≤ . 
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We have, from (2) × (3) + (4) × (5), 
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Now, substituting p in place of n, we have 
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Extract formula for the sum of the squares 

 
 

by putting 1+k  in place of k in the second and third summations. Also, these two 
summations simplify to 
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The summation here simplifies to  ∑
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Hence, the expression (11)  is equal to  
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so that the result is true for n = p + 1. 
Hence, by the principle of Mathematical induction, the result is true for all non-
negative integral n. The formula 
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 follows at once from (1). 
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RESULTS 
We have obtained exact formula for the sum of the squares of the Bessel 

function and the Neumann function of the same order of half-odd integer. The proof 
given this article is used to express the above sum as a double summation of two finite 
series which is a deduction from our proof. 

 
DISCUSSION 

The main objective of establishing a formula for the sum of the squares of Bessel 
and Neumann function of the same order of half-odd integers in to solve the long 
standing mathematical problem posed by the anomalous absorption of light ion partial 
wave by the nuclear optical potential. By the exact formula for the sum of the squares 
of Bessel and Neumann functions of the half-odd integral order, one obtains the exact 
value of the wave function the asymptotic region. This result can directly be used in 
case of neutrons scattering on composite nuclei. We believe that the exact formula we 
established will be very important in mathematics as well. 
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