Hydrolysis of glycosylpyridinium ions by anomeric-configuration-inverting glycosidases Original Research Article

Pages 79-86

Bimali Padmaperuma, Michael L. Sinnott

Close abstract

Purchase PDF

Citing articles (4) Abstract

The hydrolyses of five β -D-xylopyranosylpyridinium ions by the β -D-xylosidase of Bacillus pumilus proceed with k_{cat} values 10^8 - 10^9 -fold larger than the rates of spontaneous hydrolysis of the same compounds. Log(K_{cat}) values correlate well with aglycon p K_a [$\beta_{10}(V) = -0.52$, r = 0.99], whereas the correlation of $log(k_{cat}/K_m)$ is poor [r = 0.77; $\beta_{1g}(V/K) = \sim -0.6$]. The (1 \rightarrow 3)- β -p-glucanase of Sporotrichum dimorphosporum hydrolyses 4-bromo-2-(β -p-glucanase of Sp p-glucopyranosyl)isoguinolinium ion with a rate enhancement of 108. The amyloglucosidase II of Aspergillus niger hydrolyses three α-p-glucopyranosylpyridinium ions with rate enhancements of 10⁵–10⁸. The efficient hydrolysis of glycosylpyridinium ions by these three inverting glycosidases, the catalytic mechanism of which is unlikely to involve a nucleophile from the enzyme, makes it imporable that the hydrolysis of glycosylpyridinium ions by retaining glycosidases discovered some years ago, is initiated by addition of a catalytic nucleophilic carboxylate group of the enzyme to the pyridinium ring.

