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Abstract

IMPORTANCE Induced hypothermia, the standard treatment for hypoxic-ischemic encephalopathy
(HIE) in high-income countries (HICs), is less effective in the low-income populations in South Asia,
who have the highest disease burden.

OBJECTIVE To investigate the differences in blood genome expression profiles of neonates with HIE
from an HIC vs neonates with HIE from South Asia.

DESIGN, SETTING, AND PARTICIPANTS This case-control study analyzed data from (1) a
prospective observational study involving neonates with moderate or severe HIE who underwent
whole-body hypothermia between January 2017 and June 2019 and age-matched term healthy
controls in Italy and (2) a randomized clinical trial involving neonates with moderate or severe HIE in
India, Sri Lanka, and Bangladesh recruited between August 2015 and February 2019. Data were
analyzed between October 2020 and August 2023.

EXPOSURE Whole-blood RNA that underwent next-generation sequencing.

MAIN OUTCOME AND MEASURES The primary outcomes were whole-blood genome expression
profile at birth associated with adverse outcome (death or disability at 18 months) after HIE in the
HIC and South Asia cohorts and changes in whole-genome expression profile during the first 72 hours
after birth in neonates with HIE and healthy controls from the HIC cohort. Blood samples for RNA
extraction were collected before whole-body hypothermia at 4 time points (6, 24, 48, and 72 hours
after birth) for the HIC cohort. Only 1 blood sample was drawn within 6 hours after birth for the South
Asia cohort.

RESULTS The HIC cohort was composed of 35 neonates (21 females [60.0%]) with a median (IQR)
birth weight of 3.3 (3.0-3.6) kg and gestational age of 40.0 (39.0-40.6) weeks. The South Asia cohort
consisted of 99 neonates (57 males [57.6%]) with a median (IQR) birth weight of 2.9 (2.7-3.3) kg and
gestational age of 39.0 (38.0-40.0) weeks. Healthy controls included 14 neonates (9 females
[64.3%]) with a median (IQR) birth weight of 3.4 (3.2-3.7) kg and gestational age of 39.2 (38.9-40.4)
weeks. A total of 1793 significant genes in the HIC cohort and 99 significant genes in the South Asia
cohort were associated with adverse outcome (false discovery rate <0.05). Only 11 of these genes
were in common, and all had opposite direction in fold change. The most significant pathways
associated with adverse outcome were downregulation of eukaryotic translation initiation factor 2
signaling in the HIC cohort (z score = −4.56; P < .001) and aldosterone signaling in epithelial cells in
the South Asia cohort (z score = null; P < .001). The genome expression profile of neonates with HIE
(n = 35) at birth, 24 hours, 48 hours, and 72 hours remained significantly different from that of
age-matched healthy controls in the HIC cohort (n = 14).

(continued)

Key Points
Question Do genome expression

profiles at birth in neonates with

hypoxic-ischemic encephalopathy (HIE)

in a high-income country (HIC) differ

from those of their counterparts in

South Asia, and can this difference

explain the lack of hypothermic

neuroprotection?

Findings In this case-control study of

134 neonates with HIE from an HIC or

South Asia and 14 healthy controls from

the HIC, neonates in the HIC cohort who

had an adverse outcome after HIE had

a different host genome expression

profile at birth compared with neonates

in the South Asia cohort and displayed

opposite regulation of the significant

genes in common.

Meaning Findings of this study suggest

that differences in the nature and timing

of cerebral hypoxia ischemia explain the

lack of hypothermic neuroprotection

in South Asia.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE This case-control study found that disease mechanisms
underlying HIE were primarily associated with acute hypoxia in the HIC cohort and nonacute hypoxia
in the South Asia cohort. This finding might explain the lack of hypothermic neuroprotection.

JAMA Network Open. 2024;7(2):e2354433. doi:10.1001/jamanetworkopen.2023.54433

Introduction

Hypoxic-ischemic encephalopathy (HIE) is a leading cause of death and disability among neonates
born at full term. Worldwide, approximately 1 million neonates die or survive with a major disability
every year from HIE.1 South Asia, particularly India, shoulders the highest disease burden, accounting
for 60% of all HIE-related deaths in the world.2,3 Between 2010 and 2019, although neonatal
mortality decreased by 32% in India, HIE-specific mortality remained unchanged, resulting in an
economic loss of US $60 to $135 billion.3

Whole-body hypothermia has been associated with reduced death or disability after moderate
or severe HIE4 in high-income countries (HICs) and is the standard treatment. However, the
Hypothermia for Encephalopathy in Low-Income and Middle-Income Countries (HELIX) trial,5 the
largest clinical trial of hypothermia in the world that was conducted in South Asia, reported that
hypothermia did not reduce brain injury but increased mortality. Whole-body hypothermia was
administered using servocontrolled devices in the HELIX trial, and attainment of the target
temperature was earlier than in hypothermia trials in HICs.6 Nonetheless, hypothermia was not
neuroprotective, regardless of the duration of birth depression or birth acidosis7 and place of birth.6

It is not known whether the differential response to whole-body hypothermia between HICs and
South Asia is associated with the underlying disease mechanisms. Whole-blood gene expression
profile is increasingly used to characterize host responses in various infectious diseases,8-11 including
neonatal cytomegalovirus infections,12 and in HIE wherein the gene profiles are different for healthy
neonates vs those with sepsis.13,14

In this study, we investigated the differences in blood genome expression profiles of neonates
with HIE from an HIC vs neonates with HIE from South Asia, to understand why one population may
benefit from hypothermic neuroprotection and another may not. In addition, we assessed the
temporal changes in genome expression profile over the first 72 hours after birth in neonates with
HIE compared with matched healthy controls in an HIC.

Methods

Study Design
This case-control study analyzed data collected from (1) a prospective observational study involving
consecutive neonates with moderate or severe HIE who underwent whole-body hypothermia at the
University Hospital of Campania in Italy between January 2017 and June 2019 (hereafter, the HIC
cohort) and contemporary age-matched term healthy controls and (2) the HELIX randomized clinical
trial, which recruited 408 neonates with moderate or severe HIE from 7 tertiary public sector
neonatal intensive care units in India, Sri Lanka, and Bangladesh between August 2015 and February
2019 (hereafter, the South Asia cohort).5 The Imperial College London Research Ethics Committee
and the local research ethics committees at all sites approved both previous studies and the present
case-control study. Informed consent was obtained from parents prior to recruitment. We followed
the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.

In the HIC cohort, blood samples for RNA extraction were collected before initiation of whole-
body hypothermia (within 6 hours after birth) and then again after 24, 48, and 72 hours.

JAMA Network Open | Pediatrics Whole-Blood Gene Expression Profile After Hypoxic-Ischemic Encephalopathy

JAMA Network Open. 2024;7(2):e2354433. doi:10.1001/jamanetworkopen.2023.54433 (Reprinted) February 2, 2024 2/14

Downloaded from jamanetwork.com by guest on 02/06/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2023.54433&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2023.54433
https://www.equator-network.org/reporting-guidelines/strobe/


Age-matched term healthy controls were recruited from postnatal wards and had normal neonatal
examination (eMethods in Supplement 1). In the South Asia cohort, there was only 1 blood sample
drawn within 6 hours after birth, before initiation of hypothermia. Healthy controls could not be
recruited in South Asia.

Sample Collection and Processing
Peripheral venous or arterial blood samples were collected using customized blood RNA tubes
(PAXgene; PreAnalytiX),14 frozen, and then later extracted. The RNA from samples underwent next-
generation sequencing using sequencers (Illumina). Details of the sequencing method, quality
control, and analysis are provided in the eMethods, eTable 1, and eFigures 1-3 in Supplement 1.

Clinical Assessments
Within 6 hours after birth, all neonates with HIE were examined by certified examiners using the
Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal
Research Network hypothermia trial encephalopathy staging (modified Sarnat staging),15 and the
stage of encephalopathy was classified. Detailed neurodevelopmental examination between 18 to 24
months of age using the Bayley Scales of Infant Development III was performed by a certified
examiner. Adverse outcome was defined as death or moderate or severe disability15 (eMethods in
Supplement 1).

Statistical Analysis
We used R, version 4.1.0 (R Project for Statistical Computing), for data analysis. Differential
expression analysis to identify the genome expression profile of neonates with adverse neurological
outcome was carried out with DESeq2, version 1.32.0 (Bioconductor) first unadjusted and then
adjusted for birth weight, sex, and gestational age and treatment received (whole-body hypothermia
vs usual care in the South Asia cohort). The R package maSigPro was used to identify genes that were
differentially expressed over time, which were then clustered according to their pattern of
expression. We corrected all of the P values for multiple testing with the Benjamini-Hochberg false
discovery rate (FDR) method to control for type I error (5% FDR). Pathway analyses were conducted
by using the differentially expressed genes (DEG; FDR <0.05 and absolute log2 fold change >1), which
were associated with biological functions in the Ingenuity Pathways Knowledge Base (Ingenuity
Systems)16 (eMethods in Supplement 1).

Statistical analyses for clinical variables were performed with SPSS Statistics, version 24 (IBM
and SPSS Inc). Differences in continuous variables between groups were assessed with Mann-
Whitney or unpaired, 2-tailed t test, as appropriate. Two-sided P < .01 was considered to be
statistically significant for clinical variables. Data were analyzed between October 2020 and
August 2023.

Results

Patient Characteristics
The HIC cohort was composed of 35 neonates (21 females [60.0%], 14 males [40.0%]) with a median
(IQR) birth weight of 3.3 (3.0-3.6) kg and gestational age of 40.0 (39.0-40.6) weeks. The South Asia
cohort consisted of 99 neonates (42 females [42.4%], 57 males [57.6%]) with a median (IQR) birth
weight of 2.9 (2.7-3.3) kg and gestational age of 39.0 (38.0-40.0) weeks. Healthy controls included
14 neonates (9 females [64.3%], 5 males [35.7%]) with a median (IQR) birth weight of 3.4 (3.2-3.7) kg
and gestational age of 39.2 (38.9-40.4) weeks (Table; eTable 2 in Supplement 1).

Pregnancy-related illnesses were similar in mothers of neonates with HIE in the HIC and South
Asia cohorts. The median (IQR) umbilical cord pH (7.0 [6.9-7.0] vs 7.1 [6.8-7.3]; P < .001) was lower
and the 5-minute Apgar score (6.5 [5.0-8.0] vs 5.0 [4.0-6.0]; P < .001) was higher in the HIC vs the
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South Asia cohort. The median (IQR) onset of seizures was earlier (3.0 [1.0-5.0] hours vs 18.0 [13.2-
25.3] hours; P = .002) and more neonates had seizures within 6 hours after birth (87 of 99 [87.9%]
vs 10 of 35 [28.6%]; P < .001) in the South Asia cohort compared with the HIC cohort. The neonates
from South Asia had more white-matter injury on magnetic resonance imaging (44 of 62 [71.0%] vs
10 of 32 [31.3%]; P < .001) and higher mortality (40 of 99 [40.4%] vs 4 of 35 [11.4%]; P = .002) at 18
months. Healthy controls did not have any maternal morbidities or intrapartum sentinel events.

Comparison of Genome Expression Profile at Birth Associated With Adverse Outcome
This analysis included 35 neonates with HIE (28 with adequate quality samples taken within 6 hours
after birth) from the HIC cohort and 99 from the South Asia cohort. Although the neonates were
normothermic at the blood sample draw within 6 hours after birth, all 35 neonates in the HIC cohort
and 44 (44.4%) in the South Asia cohort subsequently received whole-body hypothermia. The
clinical characteristics of South Asia neonates with (n = 99) vs without (n = 309) genome expression
data were not different (eTable 3 in Supplement 1).

Table. Clinical Characteristics of Neonates With Hypoxic-Ischemic Encephalopathy (HIE) From a High-Income Country (HIC) or South Asia

Characteristic

Neonates with HIE, No. (%)
P value (HIC vs South
Asia)a

Healthy controls in HIC
cohort, No. (%) (n = 14)

P value (with HIE vs
healthy controls)aHIC cohort (n = 35)

South Asia cohort
(n = 99)

Maternal

Hypertension 3 (8.6) 7 (7.0) .40 0 .02

Diabetes 1 (2.8) 2 (2.0) .48 0 .04

Hypothyroidism 2 (5.7) 1 (1.0) .16 0 .05

Intrapartum sentinel events 12 (34.3) 16 (16.2) .02 0 .29

Neonatal

Emergency cesarean delivery 16 (45.7) 27 (27.3) .05 0 .002

Sex

Female 21 (60.0) 42 (42.4) .08 9 (64.3) >.99

Male 14 (40.0) 57 (57.6) .08 5 (35.7) >.99

Birth weight, median (IQR), kg 3.3 (3.0-3.6) 2.9 (2.7-3.3) <.001 3.4 (3.2-3.7) .52

Gestational age, median (IQR), wk 40.0 (39.0-40.6) 39.0 (38.0-40.0) .008 39.2 (38.9-40.4) .92

Umbilical cord pH, median (IQR) 7.0 (6.9-7.0) 7.1 (6.8-7.3) <.001 NA NA

5-min Apgar score, median (IQR) 6.5 (5.0-8.0) 5.0 (4.0-6.0) <.001 10.0 (9.5-10.0) <.001

Intubation at birth 14 (40.0) 50 (50.5) .32 0 .01

Clinical course

Moderate encephalopathy 31 (88.6) 76 (76.8) .15 0 NA

Severe encephalopathy 4 (11.4) 23 (23.2) .15 0 NA

Induced hypothermia (sample
collection within 6 h after birth)

35 (100.0) 44 (44.4) NA 0 NA

Seizuresb 10 (28.6) 87 (87.9) <.001 0 NA

Age of onset of seizures, median
(IQR), h

18.0 (13.2-25.3) 3.0 (1.0-5.0) .002 NA NA

Early-onset culture-positive sepsis 0 3 (3.0) .56 0 NA

MRI

MRI available 32 (91.4) 62 (62.6) <.001 0 NA

Basal ganglia or thalamic injury 8 (25.0) 16 (25.8) >.99 NA NA

White-matter injury 10 (31.3) 44 (71.0) <.001 NA NA

Cortical injury 4 (12.5) 15 (24.2) .27 NA NA

Outcomes at 18-22 mo

Death 4 (11.4) 40 (40.4) .002 NA NA

Moderate or severe disability 7 (20.0) 11 (11.1) .24 NA NA

Death and moderate or severe
disability

11 (31.4) 51 (51.5) .04 NA NA

Abbreviations: MRI, magnetic resonance imaging; NA, not applicable.
a P < .01 was statistically significant.

b Seizures were electrographic and/or clinical in an HIC, whereas seizures were only
clinical and electroencephalographic data were not obtained in South Asia.
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The genome expression data of the neonates who developed adverse outcome (death or
disability at 18 months) (51 in South Asia cohort; 9 in HIC cohort) were compared with the genome
expression data of the neonates with good outcome (48 in South Asia cohort; 19 in HIC cohort). A
total of 2143 genes in the HIC cohort and 83 genes in the HIC cohort were differentially expressed
(FDR <0.05) between adverse outcome and good outcome groups (eFigure 4 in Supplement 1;
eTables 4 and 5 in Supplement 2). The top DEGs in the HIC cohort were CD163L1 (FDR <0.001; log2

fold change, 1.89), RCVRN (FDR <0.001; log2 fold change, 2.84), and LZTS2 (FDR = 0.001; log2 fold
change, −0.96). In the South Asia cohort, the top DEGs were HSPD1 (FDR <0.001; log2 fold change,
1.17), FKBP4 (FDR = 0.002; log2 fold change, 1.18), and SERPINH1 (FDR = 0.002; log2 fold change,
1.36) (Figure 1). The most significant pathways associated with adverse outcome were eukaryotic
translation initiation factor 2 signaling in the HIC cohort (P < .001; z score = −4.56) and aldosterone
signaling in epithelial cells in the South Asia cohort (P < .001; z score = null). A list of the significant
pathways is provided in eTables 6 and 7 in Supplement 2.

We then repeated the analysis by using only the genes with nonzero counts and that were in
common between the South Asia and HIC cohorts (n = 30 121). A total of 1793 genes in the HIC cohort
and 99 genes in the South Asia cohort were significantly differentially expressed (FDR <0.05). Only
11 significant genes were in common (eTables 8-10 in Supplement 2). None of the 11 genes had
concordance in the direction of expression in both datasets compared with good outcome. JUN,
SERPINH1, RAB30, C3orf52, AKAP5, NKRF, ZNF331, HACD3, and RFC4 were downregulated in the
neonates from the HIC but upregulated in the neonates from South Asia. LINC01948 and LINC02363
were upregulated in the HIC and downregulated in South Asia (Figure 2A and B). Principal
component analysis plots based on the DEG (1793 in the HIC cohort; 99 in the South Asia cohort)
displayed a separation of the neonates with HIE with adverse outcome from neonates with good
outcome, although this separation was clearer in the HIC than in South Asia cohort (Figure 2C and D).

Longitudinal Genome Expression of Neonates Over First 72 Hours
We evaluated how the genome expression profile changed over time in neonates with HIE in the HIC
cohort who later developed adverse neurological outcomes and in neonates with HIE compared with
healthy controls. A total of 104 samples collected at 4 different time points (6 hours, 24 hours, 48
hours, and 72 hours) from neonates with HIE in the HIC were included in this analysis. Differential
expression identified 1604 significant DEGs between neonates with HIE with adverse outcomes vs
their counterparts with good outcomes over time. A total of 359 genes fulfilled the R2 predefined

Figure 1. Comparison of Neonates With Hypoxic-Ischemic Encephalopathy With Adverse and Good Outcomes
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the whiskers are based on the 1.5 IQR value; all data points outside the boundary are
outliers. Each dot represents a patient’s gene count. A, CD163L1, RCVRN, and LZTS2 were

the 3 most significant genes after comparison of neonates with HIE with adverse and
good outcomes in a high-income country (HIC). B, HSPD1, FKBP4, and SERPINH1 were the
3 most significant genes after comparison of neonates with HIE with adverse and good
outcomes in South Asia. All 3 genes displayed a higher expression in the adverse vs the
good outcome group.
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cutoff value (eTable 11 in Supplement 2). These genes were clustered according to their similarities in
expression patterns over time. A total of 4 clusters were identified (Figure 3). The most significant
genes were SERPINE1 (FDR <0.001, cluster 3), FN1 (FDR <0.001, cluster 3), and COL4A1 (FDR <0.001,
cluster 3).

In all 4 clusters, the difference between adverse and good outcome groups decreased after 72
hours with a similar expression profile (Figure 3). The top pathway of cluster 1 was enriched for cell
cycle control of chromosomal replication. Cluster 2 was enriched in leukocyte extravasation signaling.
Cluster 3 was enriched in pulmonary fibrosis idiopathic signaling pathway. Cluster 4 was enriched in
cell cycle control of chromosomal replication. The list of significant pathways is provided in eTable 12
in Supplement 2.

A total of 150 samples (104 from neonates with HIE; 46 from healthy controls) collected at the
4 time points were included in this analysis. Differential expression over time identified 10 785
significant DEGs between neonates with HIE and controls. Significant genes were then clustered
according to their similarities in expression pattern over time. A total of 2306 genes with the R2

predefined cutoff value were identified in 9 clusters (eTable 13 in Supplement 2; Figure 4; eFigure 5
in Supplement 1). The most significant genes were CALHM6 (FDR <0.001, cluster 7), TLR7 (FDR
<0.001, cluster 7), and PLEKHO1 (FDR <0.001, cluster 3) (eTable 13 in Supplement 2).

The top pathway of cluster 1 was enriched for p38 MAPK signaling (eTable 14 in Supplement 2).
Cluster 2 was enriched for JAK family kinases in interleukin 6–type cytokine signaling. Cluster 3 was
enriched for type 2 diabetes signaling. Cluster 4 was enriched for TH1 pathway. Cluster 5 was enriched
for glycolysis I. Cluster 6 was enriched for ferroptosis signaling pathway. Cluster 7 was enriched for
antigen presentation pathway. Cluster 8 was enriched for pulmonary fibrosis idiopathic signaling
pathway. Cluster 9 was enriched for cell cycle control of chromosomal replication. See eTable 14 in
Supplement 2 for these clusters.

Figure 2. Genome Expression Profile After Birth in Neonates With Hypoxic-Ischemic Encephalopathy (HIE) With
Adverse Outcomes
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Discussion

We found that the whole-blood host genome expression profiles soon after birth associated with
adverse outcomes in neonates with HIE from an HIC and neonates with HIE from South Asia were
substantially different. Furthermore, the few common genes that were differentially expressed in
both cohorts showed opposite associations with outcome. Downregulation of eIF2 at birth was
associated with adverse outcome in the HIC cohort, whereas aldosterone signaling was associated
with adverse outcome in the South Asia cohort. We also showed that neonates with HIE had a
specific genome expression profile over the first 3 days after birth compared with healthy controls.

To our knowledge, this case-control study has been the largest study to explore genome
expression profiles in HIE. The lack of concordance between the HIC and South Asia cohorts may
suggest a different timing in the underlying mechanisms of intrapartum hypoxia ischemia between
these neonates.

In the HIC cohort, the most significant genes associated with adverse outcomes within 6 hours
after birth were CD163L1, RCVRN, and LZTS2. These genes are associated with the hypoxia-
inducible factor-1α (HIF-1α) signaling, the master switch responsible for orchestrating the cellular
response to acute hypoxia.17,18 CD163L1 is a marker of the anti-inflammatory phenotype of
macrophages and is mediated by interleukin 10, which is induced by HIF-1α.19 RCVRN forms part of
the photoreceptors of the retina20 associated with hypoxia-induced retinogenesis.21 LZTS2 interacts
with the Wnt/β-catenin pathway to inhibit its transcriptional activity. It is upregulated in multiple
forms of cancer-induced hypoxia through inhibition of the β-catenin activity, which is a pathway
known to cross talk with HIF-1α.22 These patterns suggest an acute hypoxia ischemia in the
HIC cohort.

In contrast, the most significant genes associated with adverse outcomes in South Asia were
HSPD1, FKBP4, and SERPINH1. These genes are mainly associated with oxidative stress and
intermittent hypoxia resembling reperfusion injury, production of reactive oxygen species, and
inflammation.23,24 HSPD1, a heat shock factor, is upregulated within 8 hours after short-term chronic
hypoxia.25 HSPD1 is also increased in patients with temporal lobe epilepsy in response to seizures.26

FKBPs are chaperone molecules and promote protein folding. Abnormal expression of SERPINH1 is

Figure 3. Temporal Evolution of Genome Expression of Neonates With Hypoxic-Ischemic Encephalopathy and
Adverse Outcome
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considered a prognostic marker for cancer, and it is associated with immunoregulators and immune
infiltration.27

The biological function of the DEG was also different between neonates with HIE from an HIC
and neonates with HIE from South Asia. In the HIC cohort, the eIF2 signaling pathway was initially
downregulated. In preclinical models, eIF2 phosphorylation occurs rapidly after neonatal hypoxia
ischemia,28 leading to the inhibition of transcription and translation and to repression of protein
synthesis shortly after the hypoxic-ischemic insult29 (downregulation). This phosphorylation
reverses after reoxygenation, resulting in the resumption of protein synthesis (upregulation).29 On
the other hand, aldosterone signaling was the most significant pathway identified in the South Asia
cohort. This pathway has been implicated in chronic intermittent hypoxia settings, such as in
obstructive sleep apnea, a chronic condition leading to intermittent hypoxia and subsequent
activation of the renin-angiotensin-aldosterone system.30 Thus, this gene expression pattern
suggests a nonacute nature of intrapartum hypoxia ischemia in South Asia. These findings agree with
the changes to the genome expression previously reported in HIE.13,14 In a small cohort of 12
neonates with HIE in an HIC, the main biological pathways involved soon after birth indicated an
acute oxygen deprivation as shown by the olfactory receptor response.13 Similarly, when the genome
expression profile was examined in 47 infants with encephalopathy from South Asia,

Figure 4. Temporal Evolution of Genome Expression of Neonates With Hypoxic-Ischemic Encephalopathy (HIE) vs Healthy Controls
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overrepresentation of genes involved in neuroinflammation was found.14 Each of these phases
reflect a different timing of the disease mechanism starting with the acute hypoxic-ischemic insult;
followed by a decrease of energy phosphates, oxidative stress, and apoptosis; and finally persistent
inflammation and gliosis.

Subtle differences in the clinical phenotype, such as lower birth weight, lower incidence of
intrapartum sentinel events, lesser birth acidosis, early onset of seizures, and higher white-matter
injury on magnetic resonance imaging in neonates in South Asia vs an HIC, are consistent with the
differences found on host genome expression profile. These data provide a mechanistic explanation
for why whole-body hypothermia, the standard treatment for HIE in an HIC, was not neuroprotective
but increased mortality among low-income populations in South Asia with the highest
disease burden.

These data provide biological confirmation of our hypothesis about the compromised fetus in
the womb, which explains that there is a high occurrence of HIE among low-income populations in
South Asia and a lack of hypothermic neuroproection.31 Thus, the fetus is already compromised in the
womb and is unable to cope with the normal hypoxic process of labor, especially if it is medically
augmented.32 This clinical scenario, therefore, represents a nonacute hypoxia, as shown by
preclinical models of growth-restricted animals and intermittent umbilical cord occlusion, where the
seizure onset is earlier.33

This study also showed that the genome expression trajectory in neonates with HIE from an HIC
who later develop adverse long-term neurological outcomes is different from those with favorable
outcomes. In particular, increasing severity of outcomes was associated with upregulation of
immunological and hypoxia-related pathways. In addition, the most significant genes (SERPINE1, FN1,
and COL4A1) over time in neonates with adverse outcome are all HIF1 gene targets, and their
expression is substantially increased after oxidative stress.34 These data highlight that oxidative
stress cascade is crucial in the extent of brain injury in neonates with HIE in an HIC, as it amplifies the
cellular damage.

These data have implications for both HICs and South Asia. In an HIC cohort, adverse outcomes
were still seen in 30% of the neonates with HIE despite whole-body hypothermia,35 highlighting that
a one-size-fits-all strategy is not effective in HIE and that there is room for improvement in patient
stratification, treatment, and management (ie, personalized diagnosis or treatments). In contrast,
whole-body hypothermia was not neuroprotective and was possibly harmful in South Asia, and these
neonates required different neuroprotective approaches that did not involve whole-body
hypothermia.36 Host gene expression profiles may reflect the underlying etiological mechanisms and
offer a unique approach for disease stratification. In particular, the trajectory of genome expression
profile in neonates with HIE may help a prompt identification of those neonates at higher risk of
adverse outcomes later. The role of gene expression as a diagnostic and stratification tool has been
demonstrated in a range of diseases that are otherwise difficult to diagnose.8,9,11,37,38

Limitations
Although, to our knowledge, this study is the first-ever detailed examination of genome expression
profiles using in-depth next-generation sequencing in well characterized HIE cohorts from different
continents, there are some limitations. First, the South Asian and HIC blood samples were sequenced
in different laboratories and with different sequencers due to regulatory issues that prohibited the
transport of blood samples out of India. Therefore, we could not analyze the 2 datasets together;
instead, we performed an indirect comparison of the differential expression analyses. However, the
same protocol was followed for both blood sample collection and RNA extraction. Second, the
healthy controls were only from the HIC, again due to logistical and ethical challenges of collecting
blood samples from healthy controls in South Asia. The challenge of recruiting healthy control infants
led to similar limitations in previous studies with consistent results.12,39 Third, half of the neonates in
South Asia underwent whole-body hypothermia as part of the HELIX trial. However, all the blood
samples were collected before whole-body hypothermia was initiated and the differential expression
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analysis was adjusted for treatment. Hence, induced hypothermia is unlikely to have altered the
preintervention genome expression data, although there may be an association with the final clinical
outcome and allocation of each patient to the adverse outcome analysis group. Fourth, the HELIX
trial was conducted in 3 South Asian countries, and its results may not be generalizable to other low-
and middle-income countries. Fifth, although we collected blood samples on all 408 neonates
recruited to the HELIX trial, only 99 had adequate-quality RNA suitable for next-generation
sequencing. Many RNA samples were of poor quality due to breakdowns and temperature
fluctuations of the deep freezers in South Asia and challenges of blood sample transport in dry ice.
Nevertheless, there were no systematic differences between the neonates with RNA sequencing and
those without.

Conclusions

In this case-control study, unique differences in whole-blood genome expression at birth were found
between neonates with HIE in an HIC and neonates with HIE in South Asia. The underlying
mechanisms were associated with acute hypoxia in the HIC cohort and nonacute hypoxia in the
South Asia cohort, which may explain the lack of hypothermic neuroprotection in latter settings.
Moreover, the genome expression profile of neonates with HIE over the first 3 days after birth
remained significantly different from the genome expression profile of healthy controls in an HIC.
Whole-blood genome expression profile may be useful for rapid disease stratification for
personalized neuroprotection in HIE and for monitoring therapeutic response.
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