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Abstract 

Harmful algal blooms (HABs) caused by toxin-producing phytoplankton (TPP) have become 
increasingly common worldwide. Understanding the complex interactions between TPP and other 
organisms in the ecosystem is crucial. This study focuses on the Hopf bifurcation analysis of 
plankton interactions between TPP and zooplankton, with uptake function and a periodic toxin 
production. The maximum toxin liberation rate is considered as a bifurcation parameter. The aim 
is to determine how the toxin liberation rate affects the system. One of the proposed models 
assumes constant toxin production by TPP, resulting in an autonomous system of ordinary 
differential equations. To incorporate natural day and night, tidal, or seasonal cycles, the model 
is extended to a periodic system. The study examines the existence of steady states and trivial 
periodic solutions and analyses the stability of both models. Moreover, using the concept of 
uniform persistence, we derive sufficient conditions for the coexistence of the periodic system 
based on the model parameters. Due to instability of equilibria, we observe Hopf bifurcations in 
the constant toxin-producing model, providing insights into the system's dynamic behaviour. 
Numerical simulations are performed to validate the analytical findings of the proposed models 
and their implications. 
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Introduction 

Aquatic ecosystems heavily rely on plankton, specifically phytoplankton and 
zooplankton, as fundamental components of the food web. Phytoplankton, through 
photosynthesis, play a vital role in producing oxygen and regulating carbon dioxide 
levels. Zooplankton, in turn, act as grazers and energy transfer agents, facilitating the flow 
of energy through the ecosystem. However, the growing prevalence of Harmful Algal 
Blooms (HABs) caused by TPP poses a significant threat to both aquatic life and human 
health (Hubbart, 2012), (Phlips, 2004), (Roelke, 2011), (Sopanen, 2011). Mathematical 
models consist of either autonomous systems of ordinary differential equations or delay 
differential equations have been developed to explore the mechanisms and impacts of 
toxin-producing phytoplankton populations (Chattopadhyay J. S., 2002), (Khare, 2010), 
(Mukhopadhyay, 2006), (Saha, 2009). However, it is plausible that toxin release by 
phytoplankton is not constant (DeAngelis, 1992), (McGillicuddy Jr, 2003), (Phlips, 
2004). The main objective of this study is to discuss the bifurcation analysis of the 
proposed periodic system that models the interactions between TPP and zooplankton by 
considering natural cycles. It also aims to analyse the effect of toxin liberation on plankton 
survival, persistence, and its accumulation in the food chain.  
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Methodology/materials and methods 

Spatial homogenous models 

𝑑𝑃
𝑑𝑡 = 𝑟

(𝑃 (1 −
𝑃
𝐾
) − 𝑎𝑓(𝑃)𝑍) = 𝑟𝑃 (1 −

𝑃
𝐾 −

𝑎𝑍
𝑚 + 𝑃

) 

𝑑𝑍
𝑑𝑡 = 𝑏𝑍

(𝑓(𝑃) − 𝑑 − 𝑐𝛾(𝑡)𝑔(𝑃)) = 𝑏𝑍 (
(1 − 𝑐𝛾(𝑡))𝑃

𝑚 + 𝑃 − 𝑑) 

where 𝑃(𝑡), 𝑍(𝑡) are TPP, zooplankton populations at time 𝑡 respectively. 𝐾 is carrying 
capacity, 𝑟 is intrinsic growth rate of phytoplankton, 𝑏 is intrinsic growth rate of 
zooplankton, 𝑎 is maximum uptake rate of zooplankton, 𝑓(𝑃) is zooplankton’s uptake 
function, 𝑔(𝑃) is phytoplankton’s toxin-producing function, 𝑑 is natural mortality rate of 
zooplankton (0 < 𝑑 < 1), 𝑐 is rate of toxic substances produced by per unit biomass of 
phytoplankton. 𝑚 is the half saturation constant for a Holling type II functional response. 
𝛾(𝑡) = 𝛾(1 + 𝐴𝑞(𝑡)) is the periodic function. Here 𝑞(𝑡) is 𝜏 −periodic, 𝛾 is toxin 
liberation rate, and 𝐴 is magnitude of periodicity. 

Proposition 1: Solutions of (1) remain non negative and are bounded for 𝑡 >  0.  

The Model with constant toxin production 

𝑑𝑃
𝑑𝑡 = 𝑟 (𝑃 (1 −

𝑃
𝐾
) − 𝑎𝑓(𝑃)𝑍) 

𝑑𝑍
𝑑𝑡 = 𝑏𝑍(𝑓(𝑃) − 𝑑 − 𝑐𝛾𝑔(𝑃)) 

𝐴 = 0 yields a constant toxin production model (2), where the toxin production rate (𝛾) 
remains constant.  

The Model with periodic toxin production 

𝑑𝑃
𝑑𝑡 = 𝑟 (𝑃 (1 −

𝑃
𝐾
) − 𝑎𝑓(𝑃)𝑍) 

𝑑𝑍
𝑑𝑡 = 𝑏𝑍(𝑓(𝑃) − 𝑑 − 𝑐𝛾(1 + 𝐴 sin(𝑇𝑡))𝑔(𝑃)) 

The positive magnitude of periodicity results in a periodic system, where the toxin 
production rate varies periodically. 

Stability Analysis of the equilibria of constant toxin production 

Proposition 2: System (2) has two boundary steady states 𝐸0 =  (0, 0) and 𝐸1  =  (𝑘, 0), 
where 𝐸0 is a saddle point, and 𝐸1 is locally asymptotically stable if 𝑓(𝐾)  −  𝑑 −
 𝑐𝛾𝑔(𝐾)  <  0 and is unstable if 𝑓(𝐾) −  𝑑 −  𝑐𝛾𝑔(𝐾)  >  0. Moreover, (2) has at least 
one interior steady state if 𝑓(𝐾) −  𝑑 −  𝑐𝛾𝑔(𝐾)  >  0. 

1 

2 

3 
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When both 𝑓 and 𝑔 are of Holling type II with different half saturation constants, we 
analyze the stability of the unique interior steady state 𝐸∗  =  (𝑃∗, 𝑍∗ ) by ensuring that 
the assumptions 𝑓(𝐾)  −  𝑑 −  𝑐𝑔(𝐾)𝛾 >  0 and 1 −  𝑑 −  𝑐𝛾 >  0 are satisfied. The 
functions 𝑓(𝐾) and 𝑔(𝐾) represent values evaluated at the carrying capacity 𝐾. Then 
bifurcation occurs when the 𝑡𝑟𝑎𝑐𝑒 of the Jacobian matrix at 𝐸∗ = 0.  

Hopf Bifurcation  

By considering the maximal toxin liberation rate (𝛾) as the bifurcation parameter, we can 
demonstrate a Hopf bifurcation. For that, we employ the following theorem. 

Theorem 1: Consider constant toxin production system (2), (i.e., 𝐴 =  0) and assume  
𝑓(𝐾)  −  𝑑 −  𝑐𝛾𝑔(𝐾)  >  0 and 1 −  𝑑 −  𝑐𝛾 >  0 hold. Then system constant toxin 
production has a unique interior steady state 𝐸∗ =  (𝑃∗, 𝑍∗ ).  If 𝑔(𝑃) = 𝑃

𝑘+𝑃
 and 𝑓(𝑃) =

𝑃
𝑚+𝑃

 , then there exists a unique 𝛾0  >  0 such that a Hopf bifurcation occurs at 𝛾 =  𝛾0 
provided 𝐾 >  𝑚. 

Proof: Hopf bifurcation occurs at 𝛾 =  𝛾0, we verify that the eigenvalues cross the 
imaginary axis transversally, i.e.,  

                        𝑡𝑟′ (𝐽(𝐸∗ (𝛾0))) = (𝑑𝑃
∗

𝑑𝛾
|
𝛾=𝛾0

) (−2𝑟
𝐾
− 𝑎𝑟𝑓′′(𝑃∗(𝛾0))𝑍∗(𝛾0)) ≠  0.  

Stability analysis of periodic toxin production 

Proposition 3: Periodic system (3) always has two trivial 𝜏 −periodic solutions (0, 0) 
which is unstable and (𝐾, 0) which is asymptotically stable if 𝑓(𝐾) − 𝑑 − 𝑐𝛾𝑔 (𝐾) <
0 and unstable otherwise. 

Theorem 2: If 𝑓(𝐾) − 𝑑 − 𝑐𝛾𝑔 (𝐾) >  0, then the periodic system (3) is uniformly 
persistent where 𝛾 = 1 𝜏⁄ ∫ 𝛾(𝑡)𝑑𝑡𝜏

0 .  

Proof: Notice that the boundary is invariant under (3) and the flow 𝐹 is dissipative. Let 
𝑀1  =  {E0} and 𝑀2 = {E1}. Then 𝑀 = {𝑀1,𝑀2} is composed of disjoint, compact, and 
isolated invariant sets for 𝜕𝐹. We prove that the set 

𝑁1  =  {(𝑃, 𝑍)  ∈  𝑅+2  ∶  𝑑((𝑃, 𝑍),𝑀1)  <  𝜖} 

is an isolated neighbourhood, where 𝑑 is the Euclidean metric. Similarly, by the 
assumption 𝑓(𝐾) − 𝑑 − 𝑐𝛾𝑔 (𝐾)  >  0, we can choose 𝛿 >  0 sufficiently small. We 
prove that the set 𝑁2  is an isolated neighborhood of 𝑀2. 

𝑁2  =  {(𝑃, 𝑍)  ∈  𝑅+2  ∶  𝑑((𝑃, 𝑍),𝑀2)  <  𝛿} 

Therefore 𝑀 is an isolated covering for 𝜕𝐹. Moreover, we prove that 𝑀 is an acyclic 
covering for 𝜕𝐹. 
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Results and Discussion 

The model (3) exhibits positive periodic solutions and periodic outbreaks of planktonic 
blooms. The graphical representations presented in Figure 1 and Figure 2 are derived from 
the data presented in Table 1 and Table 2, respectively. 

                                                              

                                                       

 

 

Figure 2 (a) - (d) exhibit unstability, while Figure 2 (e) - (f) display stability. 

Conclusion 

In this work, we propose a periodic model to investigate the effects of toxin liberation by 
phytoplankton on planktonic interactions. We incorporate the concept of the periodic 

Parm 
-eter 

Value Unit Source 

𝑟 0.7 𝑑𝑎𝑦−1 Assumed 

𝑏 0.6 𝑑𝑎𝑦−1 Assumed 

𝐾 100 𝜇𝑔𝑁𝐼−1 Assumed 

𝑚 (5.7)2  (𝜇𝑔𝑁𝐼−1)2  (Jang, 2014) 

𝑎 0.7 𝑑𝑎𝑦−1 (Jang, 2014) 

𝑐 0.8 𝑑𝑎𝑦−1 Assumed 

𝑑 0.4 𝑑𝑎𝑦−1 Assumed 

𝑘 20 𝑑𝑎𝑦−1 (Jang, 2014) 

Param
-eter 

Value Unit Source 

𝑟 0.7 𝑑𝑎𝑦−1 Assumed 

𝑏 0.6 𝑑𝑎𝑦−1 Assumed 

𝐾 80 𝜇𝑔𝑁𝐼−1 Assumed 

𝑚 (5.7)2  (𝜇𝑔𝑁𝐼−1)2  (Jang, 2014) 

𝑎 0.7 𝑑𝑎𝑦−1 (Jang, 2014) 

𝑐 0.5 𝑑𝑎𝑦−1 (Jang, 2014) 

𝑑 0.4 𝑑𝑎𝑦−1 Assumed 

Figure 1. Effect of Toxin Liberation 
Rate  𝛾 of (2) with 𝐴 = 0. 

 

Table 1. Parameter values for model (2). 

Table 2. Parameter values for model (3). 

Figure 2. Effect of Toxin Liberation                  
Rate 𝛾 of (3) with Periodicity 𝐴 = 0.5. 
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function 𝛾(𝑡) and outline the conditions it follows. Since solutions remain nonnegative 
and are bounded, the proposed model is biologically sound. Additionally, we introduce 
two variations: constant toxin production and periodic toxin production. We obtain the 
stability conditions for the model with constant toxin production. Using the concept of 
uniform persistence and based on the boundary dynamics of the model, we derive 
sufficient conditions for coexistence under certain parameter conditions. Using toxin 
liberation rate as a bifurcation parameter, we prove that system can undergo a Hopf 
bifurcation when interior steady state loses its stability. Specifically, this occurs when the 
carrying capacity (𝐾) of the phytoplankton is small relative to the half-saturation constant 
(𝑚) of the zooplankton grazing rate. This finding aligns with biological reasoning, as 
phytoplankton cannot sustain high population densities when the carrying capacity (𝐾) 
is small. Consequently, the toxic effects on zooplankton are minimal, allowing both 
populations to coexist in a unique interior steady state. However, when the carrying 
capacity (𝐾) is large, the autonomous system exhibits positive periodic solutions. This 
leads to periodic outbreaks of planktonic blooms, indicating fluctuating population 
dynamics. Finally, we present the numerical simulations which validate our analytical 
findings. We demonstrate that altering the toxin liberation rate 𝛾 affects the stability of 
both the constant toxin production system and the periodic toxin production system.  
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