Abstract No: PO-02

The influence of substrates on the device performance of the TCO/CBD-CdS/ ED-CdTe and TCO/CBD-CdS/CSS-CdTe solar cells

G. K. U. P. Gajanayake¹, K. M. N. S. Bandara², D. S. M. De Silva^{1*}, and H. Y. R. Atapattu³

¹Department of Chemistry, Faculty of Science, University of Kelaniya, Sri Lanka ²Department of Physics, Faculty of Science, University of Peradeniya, Sri Lanka ³Department of Instrumentation & Automation Technology, Faculty of Technology, University of Colombo, Sri Lanka sujeewa@kln.ac.lk*

The development of cost-effective efficient photovoltaic cells is crucial for generating electricity with the most abundant solar energy to eliminate the energy crisis globally. At present, there is a growing interest in CdS/CdTe solar cells due to minimal material cost and easy and cost-effective methods of thin film deposition. The aim of this work is to investigate the influence of different transparent conducting oxide (TCO) substrates in superstrate configuration (glass/ITO:5 Ω /sq, glass/FTO:13 Ω /sq, and glass/FTO:7 Ω /sq) on the device performance of CdS/CdTe solar cells. Herein, chemical bath deposited CdS (CBD-CdS) layers were grown using 0.0333 mol/L Cd(CH₃COO)₂, 0.0667 mol/L CS(NH₂)₂, concentrated NH₄OH and 1.0 mol/L NH₄(CH₃COO) at 90 °C for 55 min. Subsequently, the CdTe layers were deposited using electrodeposition (ED) and close spaced sublimation (CSS) techniques as required. For electrodeposition of CdTe layers, CdSO₄ (1.0 mol/L) and TeO₂ (1.0 mmol/L) precursors were used at pH of 2.3 and 65 °C and deposition was run for 3 hrs. The CSS-CdTe layers were developed by maintaining the substrate and source temperature at 580 °C and 640 °C, respectively, and the deposition proceeded for 25 min. at 7.9 Torr. The glass/TCO/CBD-CdS/ED-CdTe samples were treated with CdCl₂ and glass/TCO/CBD-CdS/CSS-CdTe were undergone NP etching as suitable post-deposition treatments. The device fabrication was completed with the back contact formation (Cu/Au). The devices; glass/TCO/CBD-CdS/ED-CdTe/Cu/Au and glass/TCO/CBD-CdS/CSS-CdTe/Cu/Au prepared with FTO:13 Ω /sq delivered the highest efficiency of 5.7% (J_{SC} = 19.2 mA/cm², V_{OC} = 0.672 V, FF = 44%) and $8.6\% (J_{SC} = 30.3 \text{ mA/cm}^2, V_{OC} = 0.606 \text{ V}, FF = 47\%$), respectively while the cells prepared with glass/ITO:5 Ω /sq delivered the lowest efficiency. Hence, the glass/FTO:13 Ω /sq substrate was recognized as the most appropriate substrate for the fabrication of CBD-CdS/ED-CdTe and CBD-CdS/CSS-CdTe solar cells. The resultant optical transmittance (over 80%, above 500 nm) and surface roughness (RMS roughness of bare FTO:13 Ω /sq was 12.49 nm, and FTO:13 Q/sq/CBD-CdS was 10.15 nm) of CBD-CdS further confirmed the suitability aptness of the glass/FTO:13 Ω /sq substrate in CdS/CdTe based solar cell fabrication.

Keywords: Chemical bath deposition, Electrodeposition, Close spaced sublimation, TCO substrate, Surface roughness

Acknowledgement

This work was supported by the State Ministry of Skills Development, Vocational Education, Research and Innovations, Sri Lanka under the Edu-Training program on Prototype Manufacturing of Solar Panels.