Abstract No: STEM 10

Structural analysis of LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂, Li_{0.96} Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ and Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ materials synthesized by Pechini method

Fernando W. T. R. S.^{1*}, Amaraweera T. H. N. G.², Wijayasinghe A.¹

Layered tri-transition metal oxides, specially $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (NMC 333), have become a promising alternative to LiCoO₂ electrode material in the rechargeable Lithium-Ion Battery (LIB). The electrochemical performances of NMC 333 mainly depend on its crystallographic structural properties including lattice parameters, the unit-cell, c/a ratio, volume, crystallite size (D), dislocation density(δ), and lattice strain. This study aims to synthesize $LiN_{1/3}Mn_{1/3}Co_{1/3}O_2$, $Li_{0.96}Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$, and Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ materials and study their structural properties. The Pechini method was used for powder synthesis in this study. The synthesized materials were characterized using X-ray diffraction (XRD). X-ray characterization confirmed the formation of only the single-phase layered hexagonal lattice (α -NaFeO₂-type) structure without any impurity phase for all these prepared materials. Interestingly, while confirming the formation of layered structures, a better splitting of the (006)/(102) and (108)/(110) peaks appeared for Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ than that of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ and $Li_{0.96}Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$ in the diffractograms. The lattice parameters, i.e. a, c, c/a, the unit-cell volume, the crystallite size (D), and dislocation density(δ) are 2.8641(Å), 14.2143(Å), 4.9629, 100.979(Å³), 77.45 nm, 1.666 × 10^{14} m⁻², for LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂. While they are $2.8675(\dot{A}), 14.2317(\dot{A}), 4.9630, 101.347(\dot{A^3}),$ 85.06 nm. $1.382 \times 10^{14} \text{ m}^{-2}$ for $Li_{0.96}Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$ and 2.869 (Å), 14.2421(Å), 4.9641, 101.528(Å³), 128.38 nm, 0.606 × 10^{14} m^{-2} for $\text{Li}_{0.96}\text{K}_{0.04}\text{Ni}_{1/3}\text{Mn}_{1/3}\text{Co}_{1/3}\text{O}_2$, respectively. It is also observed that the lattice parameters, the unit-cell volume, c/a, and the crystallite size are increased with the substitution of Li⁺ by Na⁺ and K^+ . It may be due to the radii of Na^+ and K^+ are bigger than that of Li^+ and that will pave the way for increasing the interlayer space of the substituted materials with the substitution of bigger ions. The c/a ratio constitutes a direct indication of the cation mixing. Li_{0.96}Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ and Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂ exhibit higher c/a values than LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂, supporting the observation that the substituting bigger ions such as Na⁺ and K⁺ into LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂ suppresses the cation mixing and forms a well-defined layered structure. The micro-strain calculated for the $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$, $Li_{0.96}Na_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$, and $Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O_2$ are 1.38×10^{-3} , 2.17×10^{-3} and 1.46×10^{-3} , respectively. This implies a slight difference in the crystallinity of the materials, as the micro-strain was slightly affected by substituting Na⁺ and K⁺. Crystallite size (D) was 77.45 nm, 85.06 nm, and 128.38 nm for LiNi1/3Mn1/3Co1/3O2, Li0.96Na0.04Ni1/3Mn1/3Co1/3O2 and Li_{0.96}K_{0.04}Ni_{1/3}Mn_{1/3}Co_{1/3}O₂, respectively. It exhibits an increment of crystallite size, indicating a lowering of the dislocation density with the substitution of bigger ions. Altogether, this study reveals that substituting Li⁺ with bigger ions of Na⁺ and K⁺ is improving the structural stability of NMC 333.

Keywords: NMC materials, Na doping, K doping, Li-ion battery, Pechini method

¹ National Centre for Advanced Battery Research, National Institute of Fundamental Studies, Kandy, Sri Lanka

² Department of Applied Earth Sciences, Uva Wellassa University

^{*} roshanrsff@gmail.com