

Contents lists available at ScienceDirect

Current Applied Physics

journal homepage: www.elsevier.com/locate/cap

Thermally evaporated CdS/CdTe thin film solar cells: Optimization of CdCl₂ evaporation treatment on absorber layer

R.K.K.G.R.G. Kumarasinghe^{a,b}, P.K.K. Kumarasinghe^d, R.P. Wijesundera^c, B. S. Dassanayake^{a,b,*}

^a Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka

^b Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka

^c Department of Physics and Electronics, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka

^d Department of Physics, University of Central Florida, Orlando, FL, 32816, USA

ARTICLE INFO

Keywords: Thermal evaporation CdCl₂ CdTe Annealing temperature CdS/CdTe Solar cells

ABSTRACT

CdCl₂ treatment is crucial in the fabrication of highly efficient CdS/CdTe thin-film solar cells. This study reports a comprehensive analysis of thermal evaporated CdS/CdTe thin-film solar cells when the CdTe absorber layer is CdCl₂ annealed at temperatures from 340 to 440 °C. Samples were characterized for structural, optical, morphological and electrical properties. The films annealed at 400 °C showed better crystallinity with a cubic zinc blende structure having large grains. Higher refractive index, optical conductivity, and absorption coefficient were recorded for the CdTe films annealed at 400 °C with CdCl₂. Optimum photoactive properties for CdS/CdTe thin-film solar cells were also obtained when samples were annealed at 400 °C for 20 min with CdCl₂, and the best device exhibited V_{OC} of 668.4 mV, J_{SC} of 13.6 mA cm⁻², *FF* of 53.9% and an efficiency of 4.9%.

1. Introduction

CdTe thin films are excellent light-absorbing material due to the optimal energy bandgap for PV applications and high absorption coefficient [1]. Different pre and post-deposition treatments on the CdTe absorber layer and CdS/CdTe interface play an essential role in achieving higher CdTe/CdS solar cell efficiencies and long term stability [2]. Among pre and post-deposition treatments, CdCl₂ treatment has been decisive in achieving the highest recorded solar to the electric conversion efficiency of 22.4% for CdS/CdTe laboratory-scale thin-film solar cells [3]. Conventionally, CdCl2 treatment methods can be divided into; (a) solution treatments (b) evaporated treatments and (c) vapour treatments [4,5]. In the solution treatment methods, samples are dipped in a concentrated $CdCl_2$ solution followed by drying in an air or nitrogen environment before annealing. The CdCl₂ layer is deposited by evaporation of CdCl₂ powder using an evaporation technique in the evaporated and vapour treatment methods. However, the substrate is not heated in evaporated treatment method while it is heated during the CdCl₂ deposition in the vapour method [6]. When comparing CdCl₂ solution treatments, evaporated treatments, and vapour treatment methods, the evaporated technique is more efficient and produces

uniform CdCl₂ layer depositions than the other methods [7].

Recombination of generated electron-hole pairs in a solar cell can be a significant cause for reducing the device performance. Since grain boundaries are considered potential recombination centres, reducing the grain boundaries is crucial for achieving higher efficiencies [8]. Increasing the grain size is one way of achieving this.

CdTe thin-film grain boundaries are known to depend on the deposition method and conditions as well as post-deposition treatments significantly [9]. It is believed that the grain sizes of primary as-deposited CdTe thin films can be improved by post-deposition CdCl₂ heat treatment [10]. Therefore, this study investigates the properties of post-deposition CdCl₂ heat-treated CdTe films and CdS/CdTe thin-film solar cells, which are entirely fabricated using the thermal evaporation technique. Characterizations were carried out using UV–visible spectrophotometry, grazing incident X-ray diffractography (GIXRD), scanning electron microscopy (SEM), and *I*–V measurements. According to the authors' best knowledge, very few studies have been carried out for CdS/CdTe solar cell fabrications and CdCl₂ treatments entirely using the thermal evaporation technique [11,12].

https://doi.org/10.1016/j.cap.2021.10.011

Received 18 May 2021; Received in revised form 17 October 2021; Accepted 21 October 2021 Available online 28 October 2021 1567-1739/© 2021 Korean Physical Society. Published by Elsevier B.V. All rights reserved.

^{*} Corresponding author. Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka. *E-mail address:* buddhikad@sci.pdn.ac.lk (B.S. Dassanayake).