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Abstract

Phylogeographic relationships among global collections of the mosquito Aedes aegypti

were evaluated using the mitochondrial Cytochrome C Oxidase 1 (CO1) and NADH dehy-

drogenase subunit 4 (ND4) genes including new sequences from Sri Lanka. Phylogeo-

graphic analysis estimated that Ae. aegypti arose as a species ~614 thousand years ago

(kya) in the late Pleistocene. At 545 kya an “early” East African clade arose that continued to

differentiate in East Africa, and eventually gave rise to three lineages one of which is distrib-

uted throughout all tropical and subtropical regions, a second that contains Southeast

Asian/Sri Lankan mosquitoes and a third that contains mostly New World mosquitoes. West

African collections were not represented in this early clade. The late clade continued to dif-

ferentiate throughout Africa and gave rise to a lineage that spread globally. The most recent

branches of the late clade are represented by South-East Asia and India/Pakistan collec-

tions. Analysis of migration rates suggests abundant gene flow between India/Pakistan and

the rest of the world with the exception of Africa.

Introduction

Viruses transmitted by mosquitoes have become one of the primary contributors to human

disease, globally. These include Dengue virus (DENV), Chikungunya virus (CHIKV), Yellow

fever virus and Zika virus. Dengue is currently regarded as the most important arboviral dis-

ease in the world with approximately 50% of the worlds’ population living in dengue endemic

countries. The public health impact of DENV, CHIKV, Yellow fever virus and Zika virus has

increased dramatically over the years with both diseases spreading to new areas. Aedes aegypti,
is the main vector of these viruses and continues to cause a significant amount of human mor-

bidity and mortality worldwide [1, 2].

Dengue is currently estimated to occur in 128 countries worldwide. Regional distribution

of dengue shows that it is an aggravated and continuous problem in south and Southeast Asia
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and Central and South America. Major dengue epidemics have been occurring in Asian and

Southeast Asian countries following World War II, which have turned in to pandemics

recently [2]. In the Americas, although the control campaign by the Pan American Health

Organization (PAHO) restricted the epidemics till 1970s, the suspension of the campaign has

reinvested the region to hyper endemic levels of dengue cases [2]. In Sri Lanka, dengue has

become a serious arboviral disease with an alarming increase in the number of reported cases.

In 2017, 185,688 dengue cases were reported to health authorities with 45% of the cases being

reported from the western province, the main commercial province in Sri Lanka [3]. This is

4.7-fold higher than the average number of cases for the same time period between 2010 and

2016 [3]. Although the numbers have decreased in year 2018 with 51,586 recorded dengue

cases [3], drought conditions with low rainfall prevailed throughout the year. Aedes aegypti is

considered as the primary vector of DENVs in Sri Lanka and was first reported in Sri Lanka

during 1930s [4].

The global expansion of dengue and other arboviruses was preceded by the global spread of

their main vector Ae. aegypti. Aedes aegypti arose as a species in Africa where it differentiated

into two subspecies. In Africa, Ae. aegypti formosus (Aaf) has a dark cuticle, no scales on the

first abdominal tergite, and lives in forested habitats where it oviposits in natural containers

(e.g. tree holes). Adults probably occupied the forest canopy while they fed on non-human pri-

mates. Outside of Africa, populations generally consist of the subspecies Ae. aegypti aegypti
(Aaa) with a light tan cuticle, scales on the first abdominal tergite, and strong anthropophilic

habits [5, 6]. The subspecies eventually adapted to feeding on humans and breeding in artificial

containers (e.g. water jars and barrels, and tires). In this way Aaa probably colonized the tropi-

cal and subtropical regions of the world through shipping trade during the 17th—20th centuries

[6]. Increasing globalization and the ability to adapt to human environments have enhanced

the worldwide spread and establishment of Aaa [7], an invasive mosquito that has become a

very important arbovirus vector in Asia during the last few years due to the increasing number

of dengue cases. Although the two subspecies were originally defined based on differences in

coloration and scales on the first abdominal tergite [5, 8] genetic studies have revealed that the

West African populations that have these pale scales appear to be genetically more similar to

Aaf populations than Aaa from elsewhere in the tropics [9–11].

Many genetic studies using mitochondrial genes and nuclear genes have evaluated the

global colonization history of the Ae. aegypti subspecies. The earliest studies [12–14] examined

the genetic structure and vector competence of Ae. aegypti using biochemical markers and

indicated that global collections fell into two genetic groups. A new world group contained

Aaa populations from East Africa, South America and the Caribbean and was thought to be

derived from East Africa. The second group contained Aaa populations from Asia and South-

eastern U.S and has a basal branch containing Aaf from both East and West Africa. This same

pattern has been noted in more recent genetic studies [15–20]. Studies carried out using mito-

chondrial and nuclear DNA markers have also confirmed the existence of two clades. A study

carried out using NADH dehydrogenase subunit 4 (ND4) mitochondrial DNA sequence data

from populations of Ae. aegypti from Senegal, West Africa and East Africa, identified two

clades [15], West Africa basal clade and the East Africa derived clade. But these also did not

correspond to Aaa and Aaf. More recent studies based on nuclear markers have used micro-

satellites [16], a Single Nucleotide Polymorphism (SNP) chip [17, 18] and exon enriched

whole genome sequencing [19, 20]. Bennett et al., 2016 and Gloria-Soria et al., 2016 applied

Approximate Bayesian Computation (ABC) to both nuclear and mitochondrial markers [7,

16]. ABC supported a demographic model of lineage diversification, historical admixture and

recent population structuring. These studies suggested that because Aaf are dependent on for-

ests, the effects of forest fragmentation and expansion generated by Pleistocene climatic
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change may have been a factor in early diversification of populations. Human movement

across Africa also probably facilitated more recent divergences. In agreement with other stud-

ies Bennett et al., 2016 and Gloria-Soria et al., 2016 [7, 16] noted a decreasing genetic diversity

cline consistent with cumulative bottlenecks as Ae. aegypti was shipped to the Americas and

later to Asia. These studies all confirm the existence of a clade at the base of the tree containing

Aaf, with a second clade derived from the first that contains mosquitoes from East and West

Africa. Two genetic groups of Ae. aegypti in Colombia [21] had haplotypes from both basal

and derived clades. This study [21] also revealed that the populations with relatives from the

derived clade exhibited insecticide resistance while the population with relatives from the basal

clade did not. Studying the genetic differentiation of two lineages is epidemiologically impor-

tant as populations from different origins vary in vector competencies for arboviruses and

insecticide resistance [9, 22, 23].

Given the importance of mitochondria as the primary energy metabolic hub in cells, mito-

chondrial genes have become instrumental for reconstructing evolutionary relationships

within species compared to other genetic markers [24, 25]. Specifically, they are maternally

inherited, single copy, non-recombining and abundant [24]. Mitochondria are the site at

which the oxidative phosphorylation (OXPHOS) pathway for production of adenosine tri-

phosphate (ATP) takes place. Four of the five complexes in OXPHOS are encoded by mito-

chondrial genes, NADH dehydrogenase (complex I), cytochrome bc1 complex (complex III),

cytochrome c oxidase (complex IV), and ATP synthase (complex V). Thus, mitochondrial pro-

tein encoding genes play an important role in the energy metabolism of insects [26]. The mito-

chondrial genes encoding COI and ND4 are used as the molecular markers in this study.

Cytochrome oxidase I (COI) gene possesses special characteristics which make it suitable as a

molecular marker for evolutionary studies. It is the largest protein coding gene in the meta-

zoan mitochondrial genome which enables one to amplify and sequence many more charac-

teristics within the same functional complex. It also contains a mix of highly conserved and

variable regions so closely associated together thus making COI gene particularly useful for

evolutionary studies [27].

The present study is an attempt to estimate the phylogenetic relatedness of Sri Lankan Ae.
aegypti relative to collections from other countries and to estimate a global phylogeographic

history for the species. Due to the strategic location in the Indian Ocean, Sri Lanka may be

playing a significant role in the distribution of Ae. aegypti mosquitoes and the four dengue

virus serotypes (DENV1-4) in the world. We compile and analyze 546 CO1 and 67 ND4 Ae.
aegypti sequences, including sequences available in GenBank and new CO1 and ND4

sequences from Sri Lanka, a country for which there is little data on the population genetics of

Ae. aegypti.

Materials and methods

Adults and larvae of Ae. aegypti were collected from January 2013 –December 2015 in seven

districts in Sri Lanka (Table 1; Fig 1). Permission to collect mosquito samples were obtained

from respective Medical Officer of Health (MOH) offices of the study district. Samples were

collected using BG-Sentinel adult mosquito traps and ovitraps. Collected larvae were reared to

adults and killed by freezing. All adults were morphologically identified to species using stan-

dard taxonomic keys [28]. Identified adults were preserved by desiccation with silica gel. For

the extraction of DNA, a maximum of 5 individuals per trap were used to avoid over-sampling

of siblings. DNA was extracted from individual adults using a Phenol/Chloroform method

[29]. Extracted DNA was stored at -80˚C in 100 μL TE buffer (10 mM Tris, 1 mM EDTA, pH
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8.0). The polymerase chain reaction (PCR) for ND4 and CO1 was carried out in an Eppen-

dorf1 Thermo-cycler in 25 μL reaction volumes.

A 349 bp region of the ND4 gene was amplified [21]. Each ND4 reaction consisted of tem-

plate DNA (2 ng/μL), 1 x PCR Buffer (Promega, USA), 2.0 mM MgCl2, 200 μM dNTPs, 0.2

mM of reverse and forward primer and 1 U of Taq polymerase (Promega, USA). The reaction

conditions entailed an initial denaturation at 94˚C for 5 minutes, 35 cycles of 94˚C for 30 sec-

onds, 50˚C for 30 seconds and 72˚C for 30 seconds with a final extension at 72˚C for 5

minutes.

A 460 bp region of the mitochondrial CO1 gene was amplified [30]. The CO1 reaction mix-

ture was the same as the ND4 mixture except that it contained 1.5 mM of MgCl2 and reaction

conditions differed in having an initial denaturation of 94˚C for 4 minutes, followed by 40

cycles of denaturation at 95˚C for 40 seconds, annealing at 45˚C for 1 minute and extension at

68˚C for 1 minute, with a final extension of 72˚C for 10 minutes. Amplified ND4 and CO1

products were run on a 1.5% agarose gel and the positive products were sent to Macrogen Inc.

Korea for sequencing.

Genetic variability in ND4 and CO1 were evaluated by examining the number of substitu-

tions, haplotypes (h), nucleotide diversity (π) [31], average number of nucleotide differences, k

[32] and Fu and Li’s F� [33]. Significantly negative F� indicate an excess of low-frequency vari-

ants indicative of population expansion, weak negative selection or positive selection. Signifi-

cantly positive F� indicate an excess of intermediate-frequency alleles associated with

population bottlenecks, breeding structure and/or balancing selection. Diversity at synony-

mous substitution sites (πs) and a replacement substitution sites (πa) were calculated as were

their ratio w = (πa) /(πs) using DnaSP v.5.10 [34]. The sequences used in analysis of the ND4

were all haplotypes recorded previously [15].

To assess the phylogenetic relationship of Sri Lankan Ae. aegypti to global collections, both

ND4 and CO1 sequences from GenBank and Sri Lanka were aligned using CLUSTALW

(www.genome.jp/tools/clustalw/) and visually inspected to ensure correct alignment along

codons. Any sites exhibiting two or more alternate nucleotides were removed because they

were likely to represent nuclear mtDNA (NUMTs) which are abundant in the Ae. aegypti
genome [35, 36].

Sixty-seven sequences of the Ae. aegypti ND4 gene were aligned which included 27

sequences from GenBank and 40 sequences from Sri Lanka. Six Aedes species were included as

outgroups (S1 Table). RAxML v.8.000 [37] was used to estimate Maximum Likelihood (ML)

trees with bootstrap analysis. The bootstrap node support was estimated with 1,000 pseudore-

plicates and the resulting tree was edited using TreeGraph2 (v. 2.0.47) [38]. The support for

Table 1. Sampling districts, geographic coordinates and the number of Ae. aegypti samples analyzed per each mitochondrial region.

Sampling district Geographic coordinates Number of samples analyzed

Latitude Longitude CO1 ND4

Colombo 60 51’ 16” 790 54’ 11” 20 20

Galle 60 47’ 00” 790 58’ 00” 18 14

Hambanthota 60 01’ 00” 800 46’ 60” 19 19

Jaffna 90 40’ 06” 800 0’ 23” 15 14

Kandy 70 17’ 47” 800 38’ 06” 20 21

Puttalum 80 14’ 00” 790 46’ 00” 21 20

Trincomalee 80 37’ 00” 810 13’ 00” 19 20

https://doi.org/10.1371/journal.pone.0235430.t001
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each labelled branch in the MCC phylogeny was placed above the branch. Branch lengths and

their 95% HPD were placed over all labelled nodes.

GenBank contains 546 Ae. aegypti CO1 sequences and 363 of these contain the same 460 bp

region of CO1 as in the current study [39–43]. Sequences from laboratory strains were

excluded. All aligned CO1 sequences were compared using RAxML v.8 to identify identical

haplotypes and 142 of the 363 sequences were unique (S2 Table). These sequences were

partitioned into eight geographic groupings: West Africa (18 sequences), East Africa (38

sequences), India and Pakistan (17 sequences), Sri Lanka (14 sequences), Southeast Asia

Fig 1. Map of sampling sites in Sri Lanka. The red dot on the global map indicates the geographical position of Sri

Lanka in the world.

https://doi.org/10.1371/journal.pone.0235430.g001
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(13 sequences), South Pacific (6 sequences), North America (6 sequences) and South America

(30 sequences). Two sequences (MG242505, HQ693081) from Ae. mascarensis were included

as outgroups since this is considered to be one of the most recent ancestors of Ae. aegypti [44,

45].

Phylogeographic analysis followed the Bayesian phylogeographic model implemented in

BEAST2 [46] v. 2.4.8. The alignment file was converted to an �.xml file using BEAUti following

the example provided by Taylor (https://math.la.asu.edu/~jtaylor/teaching/ICEMR2014/

geographical_analysis.pdf). Sequences were partitioned into the 8 geographic regions as

described above: The Site Substitution model was HKY [47] with the substitution rate set to

1.0, the gamma category count set to 8, the estimated shape parameter set to 1, frequencies

were empirical and the estimated Kappa value set to 10. A strict clock model was used. The

Clock Rate was set to 3.54 x 10−8/site/year [48]. Ten percent of the chains were discarded as

burn in. Priors were set to a coalescent constant population model, the gamma shape parame-

ter was set to exponential with a mean of 1, the kappa value was assumed to follow an exponen-

tial distribution with a mean of 10, the nonzero states were assumed to follow a Poisson

distribution with the lambda set to 0.693 and the offset set to 7, the “popSize” parameter was

set to 1/X, the variable “relativeGeorates” were assumed to follow an exponential with a mean

of 1.0 and the relative trait clock rate was assumed to follow an exponential with a mean of

1000. This dataset was analyzed with a chain length of 40 million after initial trials with shorter

chains failed to produce Effective Sample Sizes (ESS) > 200 for most variables.

Tracer (vers.1.6) (http://tree.bio.ed.ac.uk/software/tracer/) was used to calculate the poste-

rior probability that the migration rate (“rateIndicator”) is positive between a pair of geo-

graphic regions x and y. A large probability indicates direct migration between x and y while a

small posterior probability suggests barriers to gene flow. The strength of support for a particu-

lar pair of regions was also assessed by calculating its Bayes Factor (BF) as the ratio of the pos-

terior and prior probabilities following (https://math.la.asu.edu/~jtaylor/teaching/

ICEMR2014/geographical_analysis.pdf). If D is the number of regions and pi is the posterior

probability that the migration rate is positive then the prior probability (qx,y) is

qx;y ¼
lnð2Þ þ ðD � 1Þ

DðD� 1Þ

2

� � ð1Þ

There are 8 regions and so qx,y = 0.2748.

BFxy ¼
px; y

ð1 � px; yÞ
=

qx; y
ð1 � qx; yÞ

ð2Þ

Rates with Bayes factors greater than 3 were considered to be well supported. TreeAnnota-

tor v.2.4.3 was used to create the maximum clade credibility tree with each taxon identified.

Results

Variability in different geographic regions

Table 2 shows genetic diversity measures at both genes. Diversity was relatively low in West

Africa but was similar in all other regions including Sri Lanka. Fu and Li’s F� measures were

significantly negative (excess of singletons) when considering all regions. This is probably

indicative of population expansion. ND4 sequences that occurred in common among all or

some of the regions were analyzed separately and appear as “Global” in Table 2. These had a

significantly positive Fu and Li’s F� indicative of an excess of intermediate-frequency haplo-

types associated with population bottlenecks, genetic structure and/or balancing selection. In

all cases w is small and close to zero suggesting purifying selection acting in both genes.
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Phylogenetic analysis of ND4 markers

Fig 2 is the bootstrapped ML tree derived using the ND4 gene. It has a “basal” clade (bootstrap

support = 96%) containing all ND4 Ae. aegypti sequences but including West African collec-

tions at the base, global collections (AF203348, DQ176837) and the East African sequence

from Kenya (EU446278). It also has a “derived” clade (bootstrap support = 74%) that has both

East and West African collections at its base, global collections (AF203356) and many East

African sequences from Kenya. Thus, Sri Lankan populations consist of the same two previ-

ously designated West (basal) and East (derived) African clades. The paucity of ND4 sequences

on the web and the absence of a molecular clock for ND4 obviated more intensive phylogeo-

graphic analyses. Within this clade, there is only moderate resolution of clades with support

values never exceeding 75.

Phylogenetic analysis of CO1 markers

Fig 3 is the Mrbayes tree derived using the CO1 gene. The tree has a main clade (posterior

probability = 1) containing both East and West African sequences. The derived clade mainly

contains East African collections. The nodes arising from this clade gave rise to Sri Lankan,

South American and Southeast Asian collections.

Fig 4 is the coalescent tree derived using the CO1 gene. The A clade arose 614 thousand

years ago (kya) in East Africa. The Node B clade corresponds to the previously designated

“derived” clade and it began to diversify 545 kya in East Africa. The East African Node C gave

rise to a clade that has spread globally. East African Node D gave rise to a clade that eventually

Table 2. Genetic variability in ND4 and CO1 were evaluated by examining the number of substitutions (S), haplotypes (h), nucleotide diversity (π) [31], average

number of nucleotide differences, k [32] and Fu and Li’s F� [33].

Gene & Region Sample Size S h P k Fu & Li’s F� π(s) π(a) w

ND4

All Collections 157 59 136 0.0215 7.5050 -3.0598�� 0.0689 0.0051 0.0746

West Africa 19 20 19 0.0119 4.1404 -1.0688 0.0403 0.0027 0.0663

East Africa 8 18 7 0.0212 7.3929 0.3944 0.0763 0.0033 0.0429

Sri Lanka 40 17 24 0.0198 6.9231 1.3833 0.0536 0.0065 0.1214

Southeast Asia 26 26 26 0.0203 7.0985 -0.4817 0.0711 0.0039 0.0551

North America 15 23 15 0.0262 9.1333 -0.0321 0.0839 0.0076 0.0905

South America 35 26 34 0.0206 7.2034 -0.5413 0.0711 0.0044 0.0613

Global 14 15 14 0.0199 6.9560 1.8584�� 0.0723 0.0030 0.0416

CO1

All Collections 142 81 103 0.0153 7.0244 -3.4919�� 0.0153 0.0045 0.2960

West Africa 17 12 14 0.0060 2.7647 -0.9844 0.0209 0.0007 0.0311

East Africa 36 35 33 0.0148 6.8206 -1.4287 0.0474 0.0031 0.0654

India/Pakistan 17 29 15 0.0108 4.9559 -2.1729 0.0266 0.0051 0.1918

Sri Lanka 14 17 14 0.0140 6.4286 -0.2164 0.0417 0.0040 0.0961

Southeast Asia 13 16 9 0.0132 6.0513 1.0384 0.0399 0.0036 0.0895

South Pacific 5 5 5 0.0052 2.4000 0.0000 0.0197 0.0000 0.0000

North America 6 13 5 0.0130 6.0000 0.4555 0.0394 0.0036 0.0903

South America 31 37 27 0.0157 7.2409 -1.8038 0.0376 0.0079 0.2114

Diversity at synonymous substitution sites (πs) and a replacement substitution sites (πa) were calculated as were their ratio w = (πa) /(πs) using DnaSPv5.10 [34].

�� indicates probabilities that absolute F� values = 0 is < 0.01. The taxa used in analysis of the ND4 were all haplotypes in S1 Fig [15]. All Collections refers to all

collections combined. Global refers to haplotypes that appear in one or more regions.

https://doi.org/10.1371/journal.pone.0235430.t002
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Fig 2. Bootstrapped Maximum Likelihood tree derived using the ND4 gene. The “basal” clade has bootstrap support

of 96% and contains the West African collections at its base. The “derived” clade (bootstrap support = 74%) has both

East and West African collections at its base, global collections (AF203356) and many East African sequences from

Kenya. All Sri Lankan collections appear in red and are present in both clades. Information in parentheses indicate the

collection site and its unique identification number in the aligned dataset. The thickness of lines is proportional to the

bootstrap support. Maximum likelihood branch lengths are proportional to the number of nucleotide substitutions per

site.

https://doi.org/10.1371/journal.pone.0235430.g002
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Fig 3. Bayesian phylogenetic tree of relationships of Ae. aegypti based on CO1 gene. The support values written on

the branches correspond to posterior probabilities. The branch lines are colored by geographic distribution of the

corresponding haplotypes.

https://doi.org/10.1371/journal.pone.0235430.g003
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Fig 4. Phylogeographic analysis of the CO1 gene followed the Bayesian phylogeographic model implemented in BEAST2 [46] v.

2.4.8. The alignment file was converted to an �.xml file using BEAUti following the example provided by Taylor (https://math.la.asu.

edu/~jtaylor/teaching/ICEMR2014/geographical_analysis.pdf). Sequences were partitioned into 8 geographic regions. A scale

corresponding to 200,000 years is provided at the base. The identity of nodes appears in the text.

https://doi.org/10.1371/journal.pone.0235430.g004
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spread to the New World while clade E spread to Sri Lanka and Southeast Asia. One East Afri-

can lineage arising from Node E arose 179 kya and has diversified in East Africa.

The Node F clade has a support value of 37 (previously designated “basal” [15]) did not

began to diversify until 372 kya, ~173 kya later than node B. Notice that no West African hap-

lotypes appear in the Node B clade. A split (Node H) occurred in West Africa 252 kya. One of

these led to East African clade arising from Node G. The lower and upper branch of Node G

contains one West African haplotype each.

Both observations indicate that introgression into West Africa began from 252 kya (Node

H) to 372 kya. Node G also gave rise to lineages that eventually spread to South America. Sub-

sequent lineages (Nodes I and J) arising from the West African Node H continued to diversify

in West Africa and East Africa. Node I gave rise to a lineage that eventually spread to South

America. Node J subsequently gave rise to two lineages that appear to have remained in East

and West Africa. One of these contains a Mexican haplotype and the other an Indian/Pakistan

isolate. Node K (134 kya) appears to mark a time when West African lineages began to spread

out of Africa with one lineage ending up in India, Sri Lanka and the other shifting toward

Southeast Asia (Node L) with one lineage ending up in India/Pakistan and the South Pacific.

Southeast Asia Node K contains one lineage that re-colonized East Africa and from there colo-

nized Sri Lanka and eventually ended up in South America. The other clade arising from Node

M produced haplotypes that occur globally today.

The ages represented near the tips seem unreasonably old. For instance, multiple clades

comprised exclusively of New World populations have common ancestors more than 50 kya,

which is far outside the current hypotheses on when Aedes aegypti escaped Africa. However,

the 95% HPD for almost all terminal nodes includes a lower value of zero.

Migration analysis

Analysis of the rate Indicator variables in BEAST appears in Table 3. All rate Indicators with

Bayes Factors� 3 are underlined and bolded. This analysis indicates a high rate of gene flow

between the India/Pakistan region and all other regions except Africa and, curiously Sri Lanka.

There are also high rates of gene flow between East and West Africa and between Sri Lanka

and Southeast Asia.

Discussion

The present study analyzed mitochondrial genetic diversity and phylogeographic relationships

of Ae. aegypti mosquitoes collected from seven districts in Sri Lanka. The study revealed a high

genetic diversity for CO1 marker which might be due to high levels of gene flow observed in

the study between Sri Lanka and Southeast Asia. A high level of gene flow exists between India

/Pakistan region and Southeast Asia, South Pacific and North and South America. This would

inevitably lead to population mixing. As Sri Lanka is an island and acts as a main harbor for

commercial and human transport it may be playing a vital role in the observed gene flow.

Two mitochondrial clades have been reported previously that broadly represent East and

West Africa, but this was based only on the ND4 gene [15]. Furthermore, no time frame could

be estimated for these clades because a calibrated molecular clock rate is not available for the

arthropod ND4 gene. However, an independent molecular clock has been estimated for CO1

[48] and at least seven large datasets for CO1 in Ae. aegypti have appeared [7, 21, 39–43]. Some

of the problems associated with studies of the mitochondrial genome in Ae. aegypti have been

recently summarized [5].

Approximate Bayesian Computation (ABC) [49] has been applied to nucleotide sequences

from four nuclear and one mitochondrial marker to assess phylogeographic relationships
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among Ae. aegypti collections principally in Africa [7]. Their analyses showed that a model

wherein Ae. aegypti originated in Africa involving Pleistocene lineage diversification and his-

torical admixture had the best fit in the ABC.

Marine records of African climate variability document a shift toward more arid conditions

beginning 2.8 million years ago (mya), resulting from cold North Atlantic sea-surface tempera-

tures caused by the beginning of northern hemisphere glacial cycles [50–53]. The maximum of

Table 3. A) Tracer analysis of the posterior probability, likelihood, Prior probability, tree likelihood and average tree height. B) Tracer analysis of posterior probability

that the migration rate (rateIndicator) is positive between a pair of geographic regions x and y.

Summary Statistic mean Std.error ESS

(A) posterior -4397.5 2.17 183.31

Likelihood -2070.8 1.24 132.13

Prior -2326.7 1.26 345.01

treeLikelihood -1874.3 1.34 101.39

TreeHeight 1506600.0 14095.50 715.40

(B) RateIndicator

Region x Region y Mean Std.error ESS BF

Sri Lanka India/Pakistan 0.3330 0.0236 398 1.3

Sri Lanka East Africa 0.0533 0.0110 415 0.1

Sri Lanka West Africa 0.0300 0.0060 815 0.1

Sri Lanka SouthEast Asia 0.5716 0.0280 311 3.5

Sri Lanka South Pacific 0.0810 0.0110 617 0.2

Sri Lanka North America 0.1343 0.0142 579 0.4

Sri Lanka South America 0.0277 0.0059 774 0.1

India/Pakistan East Africa 0.4151 0.0515 92 1.9

India/Pakistan West Africa 0.4939 0.0454 121 2.6

India/Pakistan SouthEast Asia 0.9401 0.0087 737 41.4

India/Pakistan South Pacific 0.5327 0.0235 451 3.0

India/Pakistan North America 0.5982 0.0214 525 3.9

India/Pakistan South America 0.6792 0.0337 191 5.6

East Africa West Africa 0.9545 0.0251 69 55.4

East Africa SouthEast Asia 0.1265 0.0183 329 0.4

East Africa South Pacific 0.0289 0.0068 611 0.1

East Africa North America 0.0555 0.0123 349 0.2

East Africa South America 0.0344 0.0086 454 0.1

West Africa SouthEast Asia 0.0788 0.0100 725 0.2

West Africa South Pacific 0.0455 0.0086 581 0.1

West Africa North America 0.0954 0.0151 379 0.3

West Africa South America 0.1221 0.0296 122 0.4

SouthEast Asia South Pacific 0.5061 0.0242 427 2.7

SouthEast Asia North America 0.3208 0.0189 610 1.2

SouthEast Asia South America 0.1410 0.0236 218 0.4

South Pacific North America 0.3074 0.0189 598 1.2

South Pacific South America 0.0677 0.0134 353 0.2

North America South America 0.3230 0.0324 208 1.3

A large probability indicates direct migration between x and y while a small posterior probability would suggest barriers to gene flow. The strength of support for a

particular pair of regions was also assessed by calculating its Bayes Factor (BF) as the ratio of the posterior and prior odds (Eq 2). Rates with Bayes factors greater than 3

appear as underlined bold letters. (ESS–Effective sample size, Std.error–Standard error).

https://doi.org/10.1371/journal.pone.0235430.t003
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the penultimate glaciations occurred from 190–150 kya (corresponding with the Illinoian

Stage) and conditions in Africa became generally drier than present with deserts extending

into North Africa. Then from 150–130 kya, Africa gradually became cooler than present. This

was followed by a warmer, moister period that lasted for 15,000 years. During that time deserts

became covered with vegetation and there was a great expansion of rain forests. Then from

115–70 kya, there followed a period of cooling and drying that led to a cold, arid maximum

(corresponding to the Wisconsin period) followed by a slight moderation of climate until 22

kya. From 115–70 kya conditions became warmer and moister but with an interruption by

aridity around 11,000 years ago. A resumption of warm, moist conditions known as the Holo-

cene ‘optimum’ occurred wherein again there was a second great rain forest expansion with

vegetation again covering most of the Sahara. From then until the present Africa has become

more arid. Relatively brief arid phases (e.g. 8,200 ya.) have punctuated the generally moister

early and mid-Holocene conditions. Earlier studies assumed that ancestral Ae. aegypti were

dependent on forests, and that forest fragmentation driven by climatic change may have been

responsible for the lineage splitting in the late Pleistocene [7].

In almost all respects the findings of the current study support Bennett’s model wherein Ae.
aegypti originated in Africa and that one or more Pleistocene lineage diversifications occurred.

This has been followed by many historical instances of admixture. Differences in time scale

between our study and Bennett et al. [7] are likely a result of applying different divergence

rates. Bennett et al. [7] used 2.69 x 10−8/site/year which is the mitochondrial rate with both the

16S rRNA and CO1 rates combined [48] and 2.3 x 10−8/site/year [53]. We instead used 3.54 x

10−8/site/year [48] which is the rate for the CO1 alone. Nevertheless, our estimates are corre-

lated with Bennett et al. [7] that lineages diverged at node A 700–3000 kya while we estimate

that node A occurred 614 kya.

Our phylogeographic analysis suggests that the Pleistocene lineage diversification(s) proba-

bly happened in East Africa. The first East African lineage (Node B) (Fig 3) has remained in

East Africa where it continues to diversify (Node E) (Fig 3) and has spread to Sri Lanka and

Southeast Asia. Our original designation of Node B as the “derived” lineage [15] was incorrect.

Instead the East African lineage evolved 173 kya before the lineage giving rise to the West

Africa clade (Node F) and it should therefore be considered as basal. The West Africa clade is

the “derived” lineage and it wasn’t until 372 kya that it arrived and began to diversify in West

Africa. From there it spread to all global regions examined in the present study.

As with Bennett et al. [7], there are many cases where individuals appear to have been rein-

troduced into regions of origin. Nodes I and J (Fig 3) arise from West African lineages but con-

tain many sequences from East Africa. Also, nodes K, L, M (Fig 3) arise from Southeast Asian

lineages but gave rise to sequences eventually found in East Africa, India / Pakistan, and Sri

Lanka. This reflects the admixtures generated by global spread of Ae. aegypti. The question

remains as to whether these results indicate a current high level of gene flow between regions

in the invasive range of the mosquito or represent shared ancestral polymorphisms.

It is interesting that both groups of Sri Lanka haplotypes cluster together and have recent

origins. The two origins are, one from India/Pakistan and another from mixed clades of mos-

quitoes derived from East Africa. This appears to be counter intuitive based upon the proxim-

ity of Sri Lanka to India and its great distance to East Africa and the fact that most of the India

collections come from South India [42]. The analysis of migration rates in Table 3 supports the

idea that while there is a great deal of gene flow, among mosquitoes within the India/Pakistan

Region there is very little gene flow between India/Pakistan and Africa or Sri Lanka. This anal-

ysis also supports the idea that gene flow occurs between Southeast Asian countries and Sri

Lanka. Sri Lanka is situated along the key shipping route between the Malacca Straits and the

Suez Canal. Approximately 36,000 ships, including 4,500 oil tankers, use the route annually
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[54]. Thus, Sri Lanka may be playing a major role in the trafficking of DENV, its vector Ae.
aegypti and infected humans from Southeast Asia to the Middle East and Africa.

Conclusions

Ae. aegypti appears to have arisen as a species in East Africa in the mid-late Pleistocene proba-

bly associated with a shift towards more arid conditions beginning 2.8 million years ago

(mya), resulting from cold North Atlantic sea-surface temperatures that caused the beginning

of northern hemisphere glacial cycles. Two mitochondrial clades arose in the late Pleistocene,

but these subsequently became admixed during periods of warming and the spread of forests.

An analysis of migration rates suggests a great deal of gene flow between mosquitoes in the

India/Pakistan Region and the rest of the world with the exception of Africa and Sri Lanka.

There appears to be abundant gene flow between Southeast Asian countries and Sri Lanka.
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