4.17 Singularities of the elastic S-matrix element

W.J.M.L.P.Jayasinghe, R.A.D.Piyadasa
Department of Mathematics, University of Kelaniya

Abstract

It is well known that the standard conventional method of integral equations is not able to explain the analyticity of the elastic S-matrix element for the nuclear optical potential including the Coulomb potential. It has been shown[1],[2] that the cutting down of the potential at a large distance is essential to get rid of the redundant poles of the S-matrix element in case of an attractive exponentially decaying potential. This method has been found [3] to be quite general and it does not change the physics of the problem. Using this method, analiticity and the singularities of the S-matrix element is discussed. Singularities of the elastic S-matrix element Partial wave radial wave equation of angular momentum l corresponding to elastic scattering is given by, $$
\begin{equation*} \left[\frac{d^{2}}{d r^{2}}+k^{2}-\frac{l(l+1)}{r^{2}}\right] u_{l}(k, r)=\frac{2 \mu}{\hbar^{2}}\left[V(r)+V_{c}(r)+i W(r)\right] u_{l}(k, r) \tag{1} \end{equation*}
$$

where $V(r)$ is the real part of nuclear potential, $W(r)$ is the imaginary part of the optical potential $V_{c}(r)$ is the Coulomb potential, and k is the incident wave number. Energy dependence of the optical potential is usually through laboratory energy $E_{l a b}$ and hence it depend on k^{2} and therefore $k^{2}-\frac{2 \mu}{\hbar^{2}}\left[V(r)+V_{c}(r)+i W(r)\right]$ is depending on k through k^{2}. It is well known that $V_{c}(r)$ is independent of k. In order to make $u_{l}(k, r)$ an entire function of k, we impose k independent boundary condition at the origin. Now, we can make use of a well known theorem of Poincare to deduce that the wave function is an entire function of k^{2} and hence it is an entire function of k as well. We cut off the exponential tails of the optical potential at sufficiently large R_{m} and use the relation

$$
\begin{equation*}
\frac{1}{u_{l}} \frac{d u_{l}}{d r}=\frac{u_{l}^{(-)}(k, r)-S_{l}^{n}\left(k, R_{m}\right) u_{l}^{(+)}(k, r)}{u_{l}^{(-)}(k, r)-S_{l}^{n}\left(k, R_{m}\right) u_{l}^{(+)}(k, r)} \quad \text { for } r \geq R_{m} \tag{2}
\end{equation*}
$$

to define $S_{l}^{n}\left(k, R_{m}\right)$, where $u_{l}^{(-)}(k, r)$ and $u_{l}^{(+)}(k, r)$ stand for incoming and outgoing Coulomb wave functions respectively which are given by $u_{l}^{(\pm)}(k, r)= \pm i\left[\frac{\Gamma(l+1+i \eta)}{\Gamma(l+1-i \eta)}\right]^{\frac{1}{2}} e^{\left[\frac{\pi \eta}{2} \mp i(l+1) \frac{\pi}{2}\right]} W_{\mp i \eta, l+\frac{1}{2}}(-2 i k r)$
where W are the Whittaker functions. In the limit $R_{m} \rightarrow \infty S_{l}^{n}\left(k, R_{m}\right)$, the nuclear part of the S-matrix element, becomes $S_{l}^{n}(k)$ and the redundant poles removed[1],[2].Now, the nuclear S-matrix element, in terms of the Whittaker functions is given by
$S_{l}^{n}(k)=(-1)^{l} \frac{\Gamma(l+1-i \eta)}{\Gamma(l+1+i \eta)} \frac{W_{i \eta, l+\frac{1}{2}}^{\prime}(2 i k r)-P_{l}(k, r) W_{i \eta, l+\frac{1}{2}}(2 i k r)}{W_{-i \eta, l+\frac{1}{2}}^{\prime}(-2 i k r)-P_{l}(-k, r) W_{-i \eta, l+\frac{1}{2}}(-2 i k r)}, r \geq R_{m}$
where $P_{l}(k, r)=\frac{u_{l}^{\prime}(k, r)}{u_{l}(k, r)}$, and $S_{l}^{n}(k)$ has an essential singularity at $k=0$, which is apparent from the Wister's definition of the Gamma function $\Gamma(z)$ since $z=l+1 \pm i \eta$.However, this singularity has no any physical meaning and is an outcome of treating $\frac{2 \eta k}{r}$ as well defined quantity for all k including $k=0$ in the corresponding Schrödinger equation.The infinite number of zeros and poles of S - matrix element due to the Gamma functions associated with S - matrix element have to be interpreted carefully. $S_{l}^{\eta}(k)=0$ at the zeros of $\frac{1}{\Gamma(l+1+i \eta)}$ and then the total wave function reduces to

$$
\left.u_{l}^{(-)}(k, r)=-i\left[\frac{\Gamma(l+1-i \eta)}{\Gamma(l+1+i \eta)}\right]^{\frac{1}{2}} e^{\left[\frac{\pi \eta}{2}+i(l+1) \frac{\pi}{2}\right.}\right]_{W_{i \eta, l+\frac{1}{2}}}(2 i k r)
$$

which is also zero. Even though the corresponding energies of these states are negative since the corresponding wave number is given by

$$
k=i \frac{z_{1} z_{2} e^{2}}{\hbar^{2}(n+l+1)} \quad n=0,1,2, \ldots
$$

they are not physically meaningful bound states as found in[1],[2] long ago. These states are unphysical since poles are redundant poles. This fact is clearly understood by the fact that all these poles are absent in the physically meaningful total S - matrix element.
For large $|k|, S_{l}^{\eta}(k) \sim(-)^{l} e^{-2 i k r} S(k)$, where $S(k)=\frac{\left[-i k+P_{l}(k)\right]}{\left[i k-P_{l}(-k)\right]}$. since $W=e^{ \pm 2 i k r}$ for large k. Therefore the S-matrix element has an essential singularity at infinity, which is on the imaginary axis. It is clear that there are no redundant poles in the total S-matrix element is free from redundant poles since $S_{l}^{t}(k)=S^{C} S_{l}^{n}$, where $S^{C}=\frac{\Gamma(l+1+i \eta)}{\Gamma(l+1-i \eta)}$.

References

(1) Ma S. T. , Phys. Rev. 69, 668 (1946)
(2) Ma S. T., Phys. Rev. 71, 195 (1946)
(3) Barut A.O. et.al Jour. of Math. Phys. 2, 178 (1961)

