Photochemical Triggering of the Bergman and Myers?Saito Cyclizations

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Australian Journal of Chemistry

Abstract

Two strategies for the photochemical generation of reactive enediyne compounds and their subsequent cycloaromatization to p-benzyne or ?,3-didehydrotoluene derivatives are discussed in this account. The first method employs a photo-Wolff reaction of stable 11- or 12-membered ring precursor enediynes containing the 2-diazo-1,3-diketone moiety. Irradiation of these compounds results in ring contraction and the formation of two isomeric enediynes possessing an enolized ?-ketoester fragment. One of the isomers undergoes the conventional Bergman cyclization, whereas the other isomerizes into the enyne-allene tautomer, which rapidly cyclizes via a Myers?Saito mechanism. The second strategy consists of replacing the triple bond in a cyclic enediyne or enyne-allene structure with a cyclopropenone group, rendering them thermally stable. Photolysis of cyclopropenones results in efficient decarbonylation and the regeneration of a triple bond, restoring the enediyne ?-system. The generation of reactive enediynes by non-resonant two-photon excitation using wavelengths within a ?phototherapeutic window? was also demonstrated. Photogenerated enediynes show significant nuclease activity, efficiently inducing single-strand dDNA cleavage.

Description

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By