Digital Repository

Homogenization of Daily Temperature Data

Show simple item record Hewaarachchi, A.P. Li, Yingbo Lund, Robert Rennie, Jared 2017-07-11T06:23:32Z 2017-07-11T06:23:32Z 2017
dc.identifier.citation Hewaarachchi, Anuradha P., Li, Yingbo, Lund, Robert and Rennie, Jared 2017. Homogenization of Daily Temperature Data. Journal of Climate 30(3): 985-999. en_US
dc.description.abstract This paper develops a method for homogenizing daily temperature series. While daily temperatures are statistically more complex than annual or monthly temperatures, techniques and computational methods have been accumulating that can now model and analyze all salient statistical characteristics of daily temperature series. The goal here is to combine these techniques in an efficient manner for multiple changepoint identification in daily series; computational speed is critical as a century of daily data has over 36 500 data points. The method developed here takes into account 1) metadata, 2) reference series, 3) seasonal cycles, and 4) autocorrelation. Autocorrelation is especially important: ignoring it can degrade changepoint techniques, and sample autocorrelations of day-to-day temperature anomalies are often as large as 0.7. While daily homogenization is not conducted as commonly as monthly or annual homogenization, daily analyses provide greater detection precision as they are roughly 30 times as long as monthly records. For example, it is relatively easy to detect two changepoints less than two years apart with daily data, but virtually impossible to flag these in corresponding annually averaged data. The developed methods are shown to work in simulation studies and applied in the analysis of 46 years of daily temperatures from South Haven, Michigan. en_US
dc.language.iso en en_US
dc.publisher American Meteorological Society en_US
dc.title Homogenization of Daily Temperature Data en_US
dc.type Article en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


My Account