Science

Permanent URI for this communityhttp://repository.kln.ac.lk/handle/123456789/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Optimization of growth parameters of photoactive Cu2ZnSnS4.
    (International Research Symposium on Pure and Applied Sciences, 2017 Faculty of Science, University of Kelaniya, Sri Lanka., 2017) Fernando, W. T. R. S.; Jayathilaka, K. M. D. C.; Wijesundera, R. P.; Siripala, W.
    Cu2ZnSnS4 (CZTS) is a promising candidate for application in low-cost and environmentally friendly thin film solar cells due to its optoelectronics properties. It is a perfect absorber material for photovoltaic applications due to its high absorption coefficient (>10-4 cm-1) and direct optical band gap (1.4 - 1.5 eV). Among the CZTS preparation techniques, electrodeposition of Cu, Sn and Zn stack layers followed by sulphurisation in H2S is an attractive technique because of its simplicity, low cost and easy to control stoichiometry. In this investigation, optimization of growth parameters in order to obtain photoactive CZTS thin films by sulphurisation of electrodeposited Cu, Sn and Zn stack layers has been investigated. Cu thin film was electrodeposited on Mo substrate at –0.89 V Vs Ag/AgCl electrode in an electrochemical cell containing 0.4 M CuSO4, 3 M lactic acid and NaOH at pH 11. Deposition of Sn thin film on Mo/Cu electrode was carried out at -1.2 V Vs Ag/AgCl in an electrochemical cell containing 0.055 M, 2.25 M NaOH and 8 ml of sorbitol. Zn thin film was electrodeposited on Mo/Cu/Sn at -1.2 V Vs Ag/AgCl in an electrochemical cell containing 0.2 M ZnSO4. Deposition parameters of Cu, Sn and Zn have been obtained by voltammograms. In order to grow CZTS, Mo/Cu/Sn/Zn thin film electrodes were annealed at 550 oC for 60 min in H2S. Sulphurisation process was carried out at different temperatures and durations using set of identical Mo/Cu/Sn/Zn thin film electrodes and thereby optimized temperature and duration of the sulpurisation. Atomic ratios of initial Cu, Sn and Zn layers could be crucial parameters in determining properties of CZTS thin films. Therefore, atomic ratios of Cu/Sn/Zn layers were optimized by changing Cu, Sn and Zn deposition duration. Various combinations of deposition durations were carried out and optimized by monitoring the dark and light I-V measurements in a PEC containing 0.1 M sodium acetate. Dark and light I-V characteristics revealed that the best photoactive CZTS films can be grown by depositing Cu for 20 min, Sn for 10 sec and Zn for 10 sec. Results further showed that photoconductivity of CZTS thin films is p-type. It is evident from reflectance measurements that the band gap of the CZTS films is 1.5 eV. In conclusion, it is found that the highest photoactive p-CZTS thin films can be grown by sulphurisation of electrodeposited Cu, Sn and Zn stack layers on Mo substrate using H2S at 550 oC for 60 min. Cu: Sn: Zn ratios of the stack layers are the crucial parameters in determining photoactive CZTS thin films. The methodology developed in this study will be further investigated in order to develop the materials for wider applications.
  • Item
    Growth of CuZnS thin films by sequential electrodeposition and sulphurisation
    (Faculty of Science, University of Kelaniya, Sri Lanka, 2016) Fernando, W.T.R.S.; Jayathilekea, K.M.D.C.; Wijesundera, R.P.; Siripala, W.
    Copper Zinc Sulphide (CuZnS) is a promising new absorber material for solar cell applications. Indeed, this material is very attractive for low cost device applications due to abundance and low cost of the staring materials. Very recently, a CuZnS based solar cell with In2S3 window material has been reported having Voc of 0.41 V, Jsc of 10.6 mA/cm2, FF of 45% and  of 1.94%. This initial finding has proven the possibility of developing this material as a solar energy material. Among the CuZnS preparation techniques, electrodeposition is an attractive technique because of its simplicity, low cost and possibility of making large area thin films. In this study, possibility of growth of CuZnS thin films by sulphurisation of electrodeposited Cu and Zn stack layers using S powder has been investigated. Cu thin film was electrodeposited on Ti substrate at –700 mV Vs Ag/AgCl for 15 min in an electrochemical cell containing 0.05 M sodium acetate and 0.005 M cupric acetate. Deposition of Zn thin film on Ti/Cu electrodes was carried out at -1.2 V Vs Ag/AgCl for 1 min in an electrochemical cell containing 0.2 M ZnSO4. Deposition parameters of Cu and Zn have been obtained by voltammograms. Set of identical Ti/Cu/Zn thin film electrodes having Cu/Zn ratio of 3.2 were prepared by maintaining the respective Cu and Zn thin film deposition durations for studying the sulphurisation process. In order to grow CuZnS, Ti/Cu/Zn thin film electrodes were annealed at different temperatures (400 oC, 450 oC, 500 oC, 550 oC and 600 oC) with different S contents (10 mg, 20 mg, 30 mg, 40 mg and 50 mg) for a duration of 60 min. CuZnS thin films were characterized using dark and light current voltage measurements in a PEC containing 0.1 M sodium acetate to obtain the best sulphurisation condition. Dark and light I-V characteristics revealed that the films annealed at 600 oC with the S content between 10 to 20 mg exhibits photoactivity. Further, photocurrent was always cathodic confirming the formation of p-CuZnS thin films. It was revealed in this preliminary investigation that the best photoactive films could be produced when films are annealed at 600 oC for 60 min in 20 mg S content. We have found, that photoactive p-CuZnS thin films can be grown by employing the technique of annealing electrodeposited Cu and Zn stack layers using S powder. Cu/Zn ratio of the stack layers could be the crucial parameter in determining the structure, conductivity type and resistivity of CuZnS films and therefore the methodology developed in this study could be further investigated, in order to develop the material for wider applications.