Chemistry
Permanent URI for this collectionhttp://repository.kln.ac.lk/handle/123456789/3748
Browse
4 results
Search Results
Item Fabrication of CdS/CdTe Thin Film Solar Cells via the Technique of Electrodeposition(Development of Solar Power Generation and Energy Harvesting, 2018) Atapattu, H.Y.R.; De Silva, D.S.M.; Ojo, A.A.; Dharmadasa, I.M.This study focused on fabrication of CdS/CdTe solar cells using the technique of electrodeposition as it is simple, low cost and scalable method. Initially, CdS and CdTe materials were individually deposited on fluorine doped tin oxide (FTO) glass substrates and optimum growth conditions were obtained by analyzing their structural, compositional, electrical, optical and morphological properties using the techniques of X-ray diffraction, Energy Dispersive X-ray spectroscopy, photo-electrochemical cell study, optical absorption spectroscopy and scanning electron microscopy respectively. Thereafter, final device structure ofglass/FTO/CdS/CdTe/Au was fabricated using the optimum growth conditions obtained for the two materials, CdS and CdTe. Finally the current density-voltage characteristics of the devices were obtained to assess devices. The best device structure exhibited short circuit current density (L) of 24.4 mA cm- 2, open circuit voltage (V) of 681.9 mV, Fill Factor (FF) of 0.32 and conversion efficiency of 5.4 per cent.Item THE EFFECT OF CONCENTRATION AND PH OF CdC12 SOLUTION USED IN CdC12 TREATMENT ON THE PROPERTIES OF CdS THIN FILMS(Solar Asia 2018 Int. Conf. National Institute of Fundamental Studies, Kandy, Sri Lanka., 2018) Atapattu, I I.Y.R.; De Silva, D.S.M.; Pathiratne, K.A.S.; Dharmadasa, I.M.Among the post deposition treatments available for development of CdS/CdTe solar cells, CdCl2 treatment has been identified as one of the key processing steps that can be effectively used for improving power conversion efficiency of the CdS/CdTe solar cell. This method was identified in late 1970s and currently is used for the CdS layers as well. The present study focuses on the effect of the concentration and pH of the CdCl2 solution used for the CdCl2 treatment on the quality of CdS layers based on their electrical, optical and morphological properties. In this study, CdS layers were potentiostatically electrodeposited on glass/FTO substrates at cathodic deposition potential of 660 mV verses a saturated calomel electrode at pH of 1.80 for 30 minutes in electrolytic baths containing 0.10 mol/L CdCl2 and 0.01 mol/L Na2S2O3. The temperature and the stirring rate of electrolytic baths were maintained constant at 55 °C and 60 rpm respectively. After the depositions, the samples were rinsed in de-ionized water and dried under a high purity N2 gas flow and conveyed for the CdCl2 treatment. Nine sets of samples with two replicates in each were treated separately with aqueous CdCl2 solutions having concentrations of 1.0, 0.5 and 0.1 mol/L and for each concentration three different pH values; as-prepared (5.60, 6.30 and 7.10 respectively), 2.00 and 6.50 were used. To perform the treatment, CdCl2 solutions were sprayed for 1 minute on the CdS layer until the layers were fully covered by the solution, allowed to dry and the samples were transferred for the process of annealing at 400 °C for 15 minutes in air. Subsequently, samples were rinsed in de-ionized water and dried under a high purity N2 gas flow. The electrical, optical and morphological properties of the CdS layers were then studied using photo-electrochemical cell measurements, UV-Vis absorption spectroscopy and scanning electron microscopy respectively. As results revealed, the CdCl2 solution with the concentration of 1.0 mol/L and the pH of 2.00 is suitable for achieving good material properties in the CdS layers.Item EFFECT OF THE TYPE OF CONDUCTING GLASS SUBSTRATE ON ELECTRODEPOSITED CdS AND CdTe THIN FILMS(Solar Asia 2018 Int. Conf. National Institute of Fundamental Studies, Kandy, Sri Lanka, 2018) De Alwis, A.C.S.; Atapattu, H.Y.R.; De Silva, D.S.M.Thin film CdS/CdTe solar cells produced by the technique of electrodeposition (ED) on conducting glass substrates have become one of the leading applications of photovoltaics due to its high energy conversion efficiency via absorption of solar energy in a wider range within the solar spectrum. In previous studies, it has been established that the quality of CdS and CdTe thin films depends upon several growth parameters namely; the deposition potential, precursor concentrations & their ratios, pH of the electrolyte, deposition temperature and the rate of stirring of the electrolyte during the process of ED. In addition, the effect of conducting glass substrate on properties of the deposited material has been identified as a decisive consequence in achieving photoactive materials. Hence, the present study was carried out to determine the effect of the type of glass substrates on electrodeposited CdS and CdTe thin films. In this study, glass substrates coated with different transparent conducting oxide (TCO) layers namely; fluorine-doped tin oxide (FTO) and indium tin oxide (ITO) were considered and for each type of TCO layer two different sheet resistances (FTO: 7 vs. 13 Ω/sq and ITO: 7 vs. 15 Ω/sq) were taken into account. CdS thin layers were electrodeposited on these four types of glass substrates using an electrolyte consisted of CdCl2 (0.1 mol/L) and Na2S2O3 (0.01 mol/L) as Cd and S precursors respectively at pH of 1.7 and temperature of 55 °C for 30 minutes under cathodic deposition potential (CDP) of 650 mV vs. a saturated calomel electrode (SCE). Out of twelve replicates of CdS depositions on each type of glass substrate, six replicates from each type (glass/TCO/CdS) were conveyed for electrodeposition of CdTe thin films in an electrolyte consisted of CdSO4 (1.0 mol/L) and TeO2 (1.0 mmol/L) as Cd and Te precursors respectively at pH of 2.2 and temperature of 65 °C for 3 hours under CDP of 660 mV vs. SCE. The resulting CdS and CdTe thin films were heat treated at 400 °C for 10 minutes after each deposition and subsequent studies namely; UV-Vis absorption spectroscopy, photo-electrochemical cell analysis, scanning electron microscopy and X-ray diffraction spectroscopy were carried out to determine the optical, electrical, morphological and structural properties respectively of glass/TCO/CdS and glass/TCO/CdS/CdTe samples produced. As results revealed, the CdS and CdTe layers deposited on glass/FTO (7 Ω/sq) substrates have exhibited better optoelectronic qualities and the study further confirmed the dependence of material quality on type of the conducting glass substrate. Hence, the individual growth parameters optimization for each type of TCO glass substrate is an essential step in electrodeposition of good quality CdS and CdTe thin films for solar cell fabrications.Item Influence of the type of conducting glass substrate on the properties of electrodeposited CdS and CdTe thin films(Journal of Materials Science: Materials in Electronics (2018) 29:12419-12428 https://doi.org/10.1007/s10854-018-9358-8, 2018) De Alwisl, A.C.S.; Atapattu, H.Y.R.; De Silva, D.S.M.Owing to the greater efficiency in energy conversion by absorbing energy in a wider range of the solar spectrum, thin film CdSICdTe solar cells have been popularized as a prominent application of photovoltaics and the technique of electrodeposi-tion (ED) is an ideal method available for producing both CdS and CdTe materials upon its outrivaled simplicity, low cost, scalability and manufacturability. Typically the quality of these deposited thin films depends on several growth parameters and amid them, the type of conducting glass substrate plays a crucial role. This study is focused on the influence of conduct-ing glass substrate on the properties of electrodeposited CdS and CdTe thin films. Two types of glass substrates coated with different transparent conducting oxide (TCO) layers namely; fluorine-doped tin oxide (FTO) and indium tin oxide (ITO) having different sheet resistances (FTO: 7 and 13 Disq and ITO: 7 and 15 Disq) were considered. CdS and CdTe materials were electrodeposited respectively on each of these types of TCO layers using a three electrode electrolytic system under a consistent set of growth parameters which has been pre-optimized with respect to FTO having sheet resistance of 7 afsq. The deposited CdS and CdTe thin layers were subsequently heat treated and characterized to understand their optical, electri-cal, morphological and structural properties. Accordingly, CdS and CdTe semiconductor materials deposited on glass+10 (7 .0./sq) substrates have exhibited better optoelectronic qualities and hence, endorse the requirement of individual growth parameter optimization for each type of TCO glass substrate for the production of good quality CdS and CdTe thin films in photovoltaic device fabrications.