Jayakody, J.A.N.K. , Department of Physics, University of Kelaniya L.N.K. de Silva - Department of Mathematics, University of Kelaniya

Paper: Transformability

Cosmological constant in gravitational lensing

Consider the Schwarzschild de Sitter Metric,

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 G M}{r c^{2}}-\frac{\Lambda r^{2}}{3}\right) c^{2} d t^{2}-\left(1-\frac{2 G M}{r c^{2}}-\frac{\Lambda r^{2}}{3}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{1}
\end{equation*}
$$

The constant term $\frac{2 G M}{c^{2}}$ is recognized as the Schwarzschild radius $\left(r_{s}\right)$, and typically it is replaced by a constant term $2 m$, where $m=\frac{1}{2} r_{s}=\frac{G M}{c^{2}}$ and then the equation (1) can be written as follows.

$$
\begin{equation*}
d s^{2}=\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right) c^{2} d t^{2}-\left(1-\frac{2 m}{r}-\frac{\Lambda r^{2}}{3}\right)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) . \tag{2}
\end{equation*}
$$

Λ is the cosmological constant.
The null-geodesic equation in Schwarzschild-de Sitter metric can be written as,

$$
\begin{equation*}
\frac{E^{2}}{c^{2}}-l^{2} u^{\prime^{2}}-l^{2} u^{2}+2 m l^{2} u^{3}+\frac{\Lambda l^{2}}{3}=0,{ }^{[1]} \tag{3}
\end{equation*}
$$

where E is the energy, l is the orbital angular momentum, Λ is the cosmological constant, $u=\frac{1}{r}$ and $u^{\prime}=\frac{d u}{d \phi}$.

Differentiating (3) with respect to ϕ,

$$
\begin{equation*}
u^{\prime}\left(u^{\prime \prime}+u-3 m u^{2}\right)=0 . \tag{4}
\end{equation*}
$$

Neglecting the solution, $u^{\prime}=0$ which implies $u=$ constant, the equation of a light ray trajectory can be written as,

$$
\begin{equation*}
u^{\prime \prime}+u=3 m u^{2} . \tag{5}
\end{equation*}
$$

The zeroth order solution and the first order solution of the equation (5) that represent the light ray trajectory are respectively given below.

$$
\begin{gather*}
u_{0}=\frac{1}{r_{0}} \cos \phi^{[2]} \tag{6}\\
u=\frac{1}{r_{0}} \cos \phi-\frac{\varepsilon}{3 r_{0}^{2}} \cos ^{2} \phi+\frac{2 \varepsilon}{3 r_{0}^{2}} \tag{7}
\end{gather*}
$$

where $\varepsilon=3 \mathrm{~m}$.
In general, in the literature, it is assumed that (7) is a solution of equation (3) without considering the limitations imposed. In this paper we discuss conditions under which (7) is a solution of equation (3).

Now the orbital angular momentum, $l=p r_{0}$ where p is the linear momentum.
The linear momentum, $p=\frac{E}{c}$.
Therefore,

$$
\begin{equation*}
l=\frac{E}{c} r_{0} \tag{8}
\end{equation*}
$$

Substituting (7) and (8) in (3), we have,

$$
\begin{align*}
& \frac{E^{2}}{c^{2}}-l^{2}\left[-\frac{1}{r_{0}} \sin \phi+\frac{2 \varepsilon}{3 r_{0}^{2}} \sin \phi \cos \phi\right]^{2}-l^{2}\left[\frac{1}{r_{0}} \cos \phi-\frac{\varepsilon}{3 r_{0}^{2}} \cos ^{2} \phi+\frac{2 \varepsilon}{3 r_{0}^{2}}\right]^{2} \\
& +\frac{2 \varepsilon}{3} l^{2}\left[\frac{1}{r_{0}} \cos \phi-\frac{\varepsilon}{3 r_{0}^{2}} \cos ^{2} \phi+\frac{2 \varepsilon}{3 r_{0}^{2}}\right]^{3}+\frac{\Lambda l^{2}}{3}=0 \tag{9}
\end{align*}
$$

By simplifying the above equation and since $l \neq 0$ we obtain the following equation,

$$
\begin{gather*}
2 m\left[\begin{array}{c}
\frac{8 \varepsilon^{3}}{27 r_{0}{ }^{6}}-\frac{4 \varepsilon^{3}}{9 r_{0}{ }^{6}} \cos ^{2} \phi+\frac{2 \varepsilon^{3}}{9 r_{0}{ }^{6}} \cos ^{4} \phi-\frac{\varepsilon^{3}}{27 r_{0}{ }^{6}} \cos ^{6} \phi+\frac{\varepsilon^{2}}{3 r_{0}{ }^{5}} \cos ^{5} \phi-\frac{4 \varepsilon^{2}}{3 r_{0}^{5}} \cos ^{3} \phi+\frac{4 \varepsilon^{2}}{3 r_{0}{ }^{5}} \cos \phi \\
-\frac{2 \varepsilon}{3 r_{0}^{4}}+\frac{2 \varepsilon}{r_{0}^{4}} \cos ^{2} \phi-\frac{\varepsilon}{2 r_{0}^{4}} \cos ^{4} \phi
\end{array}\right]+\frac{\Lambda}{3}=0 \\
\Lambda=-18 m^{2}\left[\begin{array}{l}
\frac{8 m^{2}}{3 r_{0}^{6}}-\frac{4 m^{2}}{r_{0}{ }^{6}} \cos ^{2} \phi+\frac{2 m^{2}}{r_{0}{ }^{6}} \cos ^{4} \phi-\frac{m^{2}}{3 r_{0}{ }^{6}} \cos ^{6} \phi+\frac{m}{r_{0}^{5}} \cos ^{5} \phi \\
-\frac{4 m}{r_{0}^{5}} \cos ^{3} \phi+\frac{4 m}{r_{0}^{5}} \cos \phi-\frac{2}{3 r_{0}^{4}}+\frac{2}{r_{0}^{4}} \cos ^{2} \phi-\frac{1}{2 r_{0}^{4}} \cos ^{4} \phi
\end{array}\right] \tag{10}
\end{gather*}
$$

From (10) it is clear that the solution given by (7) of equation (3) is valid only if Λ is a constant of order m^{2}, and as we neglect terms of order 2 and above we are justified in assuming (7) as a solution of equation (3). However, it turns out that this particular solution is valid only if Λ is a constant of order 2 or more in m. If Λ is a non zero constant and of order one in m, the solution (7) is not valid and we have to seek other solutions.

References

[1] Jayakody, J.A.N.K., de Silva, L.N.K. 'Path of a light ray near a body with cosmological constant', $10^{\text {th }}$ Annual Research Symposium 2009, University of Kelaniya (2009).
[2] Adler, R., Bazin, M., Schiffer, M., (1965) Introduction to General Relativity, United States of America: McGraw-Hill, Inc.

