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Paper: Transformability   

Cosmological constant in gravitational lensing 

Consider the Schwarzschild de Sitter Metric, 
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The constant term 
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2GM

c
 is recognized as the Schwarzschild radius ( sr ), and typically it is replaced by a 

constant term 2m , where 
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   and then the equation (1) can be written as follows. 
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  is the cosmological constant. 

The null-geodesic equation in Schwarzschild-de Sitter metric can be written as,     
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where E is the energy, l is the orbital angular momentum,   is the cosmological constant, 
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Differentiating (3) with respect to , 

2( 3 ) 0u u u mu     .                                                     (4) 

Neglecting the solution, 0u   which implies u = constant, the equation of a light ray trajectory can be 

written as,  

23u u mu   .                                                          (5) 

The zeroth order solution and the first order solution of the equation (5) that represent the light ray 

trajectory are respectively given below. 
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where 3m  . 

In general, in the literature, it is assumed that (7) is a solution of equation (3) without considering the 

limitations imposed. In this paper we discuss conditions under which (7) is a solution of equation (3).  

Now the orbital angular momentum, 
0l pr  where p is the linear momentum. 

The linear momentum,
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Therefore,  
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Substituting (7) and (8) in (3), we have, 
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By simplifying the above equation and since 0l   we obtain the following equation, 
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From (10) it is clear that the solution given by (7) of equation (3) is valid only if   is a constant of order 

m
2
, and as we neglect terms of order 2 and above we are justified in assuming (7) as a solution of equation 

(3). However, it turns out that this particular solution is valid only if   is a constant of order 2 or more in 

m. If   is a non zero constant and of order one in m, the solution (7) is not valid and we have to seek 

other solutions.   
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