4.16 Structure of primitive Pythagorean triples and the proof of a Fermat's theorem

W.J.M.L.P. Jayasinghe, R.A.D. Piyadasa
Department of mathematics, University of Kelaniya

Abstract

In a short survey of survey of primitive Pythagorean triples $(x, y, z) \quad 0<x<y<z$, we have found that one of x, y, z is divisible by 5 and z is not divisible by 3 , there are Pythagorean triples whose corresponding element are equal, but there cannot be two Pythagorean triples such that $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{1}, z_{1}, z_{2}\right)$, where z_{1} and z_{2} hypotenuses of the corresponding Pythagorean triples. This is due to a Fermat's theorem [1] that the area of a Pythagorean triangle cannot be a perfect square of an integer, which can directly be used to prove Fermat's last theorem for $n=4$. Therefore the preceding theorem is proved using elementary mathematics, which is the one of the main objectives of this contribution. All results in this contribution are summarized as a theorem.

Theorem

If (x, y, z) is a primitive Pythagorean triangle, where z is the hypotenuse, then z is never divisible by 3 , and $x \equiv 0(\bmod 3), x y z=0(\bmod 5)$, and there are Pythagorean triangles whose corresponding one side is the same. But there are no two Pythagorean triangles such that $\left.\left(x_{1}, y_{1}, z_{1}\right),\left(x_{1}, z_{1}, z_{2}\right)\right)$, where z_{1}, z_{2} are hypotenuses.

Proof of the theorem

Pythagoras' equation can be written as

$$
\begin{equation*}
z^{2}=y^{2}+x^{2},(x, y)=1 \tag{1}
\end{equation*}
$$

and if $z \equiv 0(\bmod 3)$, then since x is not divisible by $3, z^{2}=y^{2}-1+x^{2}-1+2$.Now, it follows at once from Fermat's little theorem that z cannot be divisible by 3. If $x y z$ is not divisible by 5 , squaring (1), one obtains $z^{4}=y^{4}+x^{4}+2 x^{2} y^{2}$ and hence $z^{4}-1=y^{4}-1+x^{4}-1+2\left(x^{2} y^{2} \pm 1\right)+t$, where $t=-1$ or 3 . Therefore $x y z \equiv 0(\bmod 5)$. It is easy to obtain two Pythagorean triples whose corresponding two elements are equal, from the pair-wise disjoint sets which have recently been obtained in Ref.2. For example $365^{2}=364^{2}+Z^{2}, 365^{2}=364^{2}+Z^{2}, 365^{2}=357^{2}+6^{2}$. Now, assume that there exists two primitive Pythagorean triples of the form

$$
\begin{align*}
& a^{2}=b^{2}+c^{2} \tag{1}\\
& d^{2}=a^{2}+c^{2} \tag{2}
\end{align*}
$$

It is clear that a is odd and $c \equiv 0(\bmod 3)$. From these two equations, one obtains immediately $d^{2}-b^{2}=2 c^{2}, d^{2}+b^{2}=2 a^{2}$, and therefore

$$
\begin{equation*}
d^{4}-b^{4}=4 c^{2} a^{2}=w_{0}^{2} \tag{3}
\end{equation*}
$$

It has been proved by Fermat, after obtaining the representation of the primitive Pythagorean
triples as $x=2 r s, y=r^{2}-s^{2}, z=r^{2}+s^{2}$, where $0<s<r$ and r, s are of opposite parity, that (3) has no non trivial integral solution for d, b, w. To prove the same in an easy manner consider the equation $d^{2}+b^{2}=2 a^{2}$ in the form $d^{2}-a^{2}=a^{2}-b^{2}$ and writing it as $(d-a)(d+a)=(a-b)(a+b)$ use the technique used in Ref. 3 to obtain the parametric solution for d and b If $d-a=a-b$., then $d+b=2 a$, from we deduce $d b=a^{2}$.This never holds since $(d, a)=1=(b, a)$ by (1) and (2).If $(d-a) \frac{u}{v}=(a-b)$, where $(u, v)=1$, then $(d+a) \frac{v}{u}=(a+b)$. From these two relations, one derives the simultaneous equations

$$
\begin{align*}
& v d-u b=a(u-v) \tag{4a}\\
& u d+v b=a(u+v) \tag{4b}
\end{align*}
$$

From (4a),(4b),it is easy to deduce the relations that we need to prove the theorem as $\left(v^{2}+u^{2}\right) d=\left[2 u v+u^{2}-v^{2}\right] a,\left(v^{2}+u^{2}\right) b=\left[2 u v-\left(u^{2}-v^{2}\right)\right] a$, $\left.\left(v^{2}+u^{2}\right)(d+b)\right)=4 u v a, v^{2}+u^{2}=2 a$, assuming that u and v are odd.
Hence $d-b=\left(u^{2}-v^{2}\right),(d+b)=2 u v$. Therefore $d^{2}-b^{2}=2\left(u^{2}-v^{2}\right) u v=2 c^{2}$ and hence u, v are perfect squares and we can find two integers g, h such that. $g^{4}-h^{4}=w_{1}^{2}<w_{0}^{2}$.Now, proof of the last part of the theorem follows from the method of infinite descends of Fermat. Even if u and v are of opposite parity proof of the theorem can be done in the same way.
To complete the proof of a Fermat's theorem that $g^{4}-h^{4}=w_{0}^{2}$ is not satisfied by any non-trivial integers, we write $\left(g^{2}+h^{2}\right)\left(g^{2}-h^{2}\right)=w_{0}^{2}$, where g, h are of opposite parity, to obtain $g^{2}+h^{2}=x^{2}, g^{2}-h^{2}=y^{2}$ and $x^{4}-y^{4}=4 g^{2} h^{2}=z_{0}^{2}$, where x and y are odd and co-prime. But, in the case of the main theorem, we have shown that this is not satisfied by any non-trivial odd x, y and even z_{0} numbers. This completes the proof of the Fermat's theorem we mentioned above.

References

(1)Paulo Rebenboim, Fermat's last theorem for amateurs, Springer, Verlag (1991)
(2)Piyadasa R.A.D. et.al , $10^{\text {th }}$ international conference of Sri Lanka studies, (2005), Abstract ,pp164
(3) Piyadasa R.A.D. Analytical solution of Fermat's last theorem for $n=4$,

