4.19 Analytical proof of Fermat's last theorem for $n=4$

R.A.D. Piyadasa
Department of Mathematics, University of Kelaniya

Abstract

Fermat's last theorem for $n=4$ is usually proved [1] using the famous mathematical tool of the method of infinite descent of Fermat. In this contribution, it will be shown that the parametric solution of the polynomial equation $d^{4}=e^{4}+g^{4}, \quad(e, g)=1 \quad$ can be obtained using a simple mathematical technique and thereby the proof of the theorem can be done, without depending on the sophisticated structure of primitive Pythagorean triples of Fermat[1] given by $x=2 l m, y=l^{2}-m^{2}, z=l^{2}+m^{2}$, where $l>m>0$ and l, m are of opposite parity. The main objective of this contribution is to introduce a new simple mathematical technique which may be very useful in some other problems as well.

If the equation

$$
\begin{equation*}
d^{4}=e^{4}+g^{4}, \quad(e, g)=1 \tag{1}
\end{equation*}
$$

has a non-trivial integral solution for (x, y, z), then one of e, g is even and we can assume that d, e, g are positive. If g is even, $\left(d^{2}-g^{2}\right)\left(d^{2}+g^{2}\right)=e^{4}$ and terms in the brackets are co-prime and hence, one writes

$$
\begin{gather*}
d^{2}+g^{2}=x^{4} \tag{2a}\\
d^{2}-g^{2}=y^{4} \tag{2b}
\end{gather*}
$$

From these two equations, we get

$$
\begin{equation*}
2 d^{2}=x^{4}+y^{4} \tag{2c}
\end{equation*}
$$

Therefore $\left(x^{2}-d\right)\left(x^{2}+d\right)=\left(d-y^{2}\right)\left(d+y^{2}\right)$ and it is easy to deduce that terms in the brackets on the left-hand side or on the right-hand side of this equation may have only factor 2 in common since all numbers are odd and x, d, y are co-prime to one another. In the following, a new simple mathematical technique is used to obtain the parametric solution for $x, y, \mathrm{~d}, \mathrm{~g}$ from this single equation.
If $x^{2}-d=d-y^{2}, \quad 2 d=x^{2}+y^{2}$ and therefore $4 d^{2}=x^{4}+y^{4}+2 x^{2} y^{2}$, which means $d^{2}=x^{2} y^{2}$, and it leads to a contradiction since $(d, e)=1$. Similarly we can easily show that $x^{2}-d \neq d+y^{2}$. Now, let $\left(d-y^{2}\right)=\frac{a}{b}\left(x^{2}-d\right)$, to obtain $x^{2}-d=b a^{-1}\left(d-y^{2}\right)$, where $(a, b)=1$.Then $\frac{b}{a}\left(x^{2}+d\right)=\left(d+y^{2}\right), x^{2}+d=a b^{-1}\left(d+y^{2}\right)$.Now, let us form the following two simultaneous equations,

$$
\begin{align*}
x^{2}-d & =b a^{-1}\left(d-y^{2}\right) \tag{a}\\
x^{2}+d & =a b^{-1}\left(d+y^{2}\right) \tag{b}
\end{align*}
$$

to obtain,

$$
\begin{equation*}
2 x^{2} a b=a^{2}\left(d+y^{2}\right)+b^{2}\left(d-y^{2}\right) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
2 a b d=a^{2}\left(d+y^{2}\right)-b^{2}\left(d-y^{2}\right)=\left(a^{2}-b^{2}\right) d+\left(b^{2}+a^{2}\right) y^{2} \tag{4}
\end{equation*}
$$

Since $(d, y)=1, b^{2}+a^{2}=d k$, where k has to be determined. Then, one easily obtains $2 a b=a^{2}-b^{2}+y^{2} k, y^{2}=\frac{2 a b+b^{2}-a^{2}}{k}, d=\frac{a^{2}+b^{2}}{k}$. Now, from(3), it follows that $2 a b x^{2}=\left(a^{2}+b^{2}\right) d+\left(a^{2}-b^{2}\right) y^{2}=\frac{\left(a^{2}+b^{2}\right)^{2}+\left(a^{2}-b^{2}\right)\left(2 a b+b^{2}-a^{2}\right)}{k}$ Hence, $x^{2}=\frac{2 a b+a^{2}-b^{2}}{k}$ and, from which it follows that $x^{2} y^{2} k^{2}=4 a^{2} b^{2}-\left(a^{2}-b^{2}\right)^{2}, \quad\left(a^{2}-b^{2}\right)^{2}+k^{2} x^{2} y^{2}=4 a^{2} b^{2}$

It is clear from (5) that a and b cannot be of opposite parity since then $k^{2} x^{2} y^{2}$ cannot be either odd or even. Hence a and b are both odd. and therefore $k^{2}=4$ or $4 \mid k^{2}$.
Therefore $x^{2} y^{2}=\left(4 a^{2} b^{2}-\left(a^{2}-b^{2}\right)^{2}\right) / 4=e^{2}, d=\frac{a^{2}+b^{2}}{2}, a b\left(a^{2}-b^{2}\right)=g^{2}$ as given below, which is the parametric solution of the equation (1), where a, b are parameters.

Now, $x^{2}-d=\frac{2 a b+a^{2}-b^{2}-a^{2}-b^{2}}{k}=\frac{2 a(a-b)}{k}$ and k is a factor of $a^{2}+b^{2}$ and if it is a factor of $a-b$, one deduces that k is 2 or a factor of a or b. Since $(a, b)=1$, we conclude that $k=2$. Therefore $x^{2} y^{2}=a^{2} b^{2}-\left(a^{2}-b^{2}\right)^{2} / 4$
Since $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)=x^{4}-y^{4}=2 g^{2}$, which follows from $(2 \mathrm{a}),(2 \mathrm{~b})$, it is easy to deduce

$$
\begin{equation*}
a b\left(a^{2}-b^{2}\right)=g^{2} \tag{6}
\end{equation*}
$$

Therefore $a, b,\left(a^{2}-b^{2}\right)$ should be perfect squares. Now, if $a=r^{2}, b=s^{2}$, then $r^{4}-s^{4}=t^{2}$ for some integers r, s, t. The famous and the only theorem that Fermat has proved is that there are no integers r, s, t satisfying $r^{4}-s^{4}=t^{2}$. Hence the Fermat's last theorem for $n=4$ can be deduced. It is quite interesting that applying the mathematical technique used in this contribution ,we have shown[2] very easily that the equation $r^{4}-s^{4}=t^{2}$ has no non- trivial integral solution for r, s, t, and then the Fermat's last theorem for $n=4$ follows at once[1].

References

(1)Paulo Rebenboim, Fermat's Last theorem for amateurs, Springer , 1991
(2)W.M.J.L.P.Jayasighe, R.A.D.Piyadasa , to be published at the $9^{\text {th }}$ Annual Research Symposium,University of Kelaniya,2008

