A Different Look at the Primitive Integral Triads of $z^{n}=y^{n}+x^{n} \quad(n=2)$ and a Conjecture on for any $n(\neq 2)$

R. A. D. Piyadasa, D. K. Mallawa Arachchi and J. Munasinghe ${ }^{1}$

The primitive Pythagorean triples (x, y, z) are now well understood [1]. However, we believe that a closer look at the solution is needed along new directions to understand the terrible difficulty in giving a simple proof for the Fermat's last theorem. Keeping this fact in mind we look at the solutions of $z^{2}=y^{2}+x^{2},(x, y)=1$ in the following manner.
is a primitive Pythagorean triple if and only if

$$
=z^{2},(x, y)=1
$$

(1)It is obvious that one of (x, y, z) is even and it can be shown that z is never even by using (1) and substituting $z=y+p, p \geq 1$, in it.
Now either x or y is even. If we suppose that y is even, $z^{2}-x^{2}=y^{2}$ and then it follows that $z-x=2^{2 \beta-1}$ or $z-x=2^{2 \beta-1} \alpha^{2}$ where $\alpha, \beta \geq 1$ and are integers. The following are examples for the justification of our point.

$$
\begin{array}{lll}
17^{2}=15^{2}+8^{2} & , \beta=1, z-x=2 \\
13^{2}=12^{2}+5^{2} & , \beta=2, z-x=2^{3} & \\
113^{2}=112^{2}+15^{2} & , \beta=1, \alpha=7 & z-x=2 \times 7^{2}
\end{array}
$$

Now we apply the mean value theorem of the form
$a^{2}-b^{2}=2(a-b) \xi$ where $\mathrm{a}<\xi<\mathrm{b}$, to the expression $z^{2}-x^{2}$, to obtain
$z^{2}-x^{2}=2.2^{2 \beta-1} \alpha^{2} \xi$ since $z^{2}-x^{2}=(z-x)(z+x)$
It follows that $z^{2}-x^{2}=2 .(z-x)(z+2 x)$
It is clear that $2.2^{2 \beta-1} \alpha^{2}$ or $2(z-x)$ is a perfect square and since $y^{2}=2 .(z-x)\left(z+{ }_{2} x\right)$ it
follows that $\frac{z+x}{2}=\xi$ is a perfect square.
Therefore, in case of any primitive triple (x, y, z) of $z^{2}=y^{2}+x^{2}$, the mean value theorem is manifested in the form
$a^{2}-b^{2}=2(a-b) \xi$ where ξ is a perfect square $\mathrm{b}<\xi<\mathrm{a}$.
Now we point out the following conjecture. Suppose that $z, x>n \quad$ for any prime $\mathrm{n} \geq 3$.
Then, $z^{n}-x^{n}=n(z-x) \xi^{n-1}$ by the mean value theorem and we conjecture that ξ is irrational when $z-x=\alpha^{n} n^{\beta n-1}$.

[^0]
[^0]: ${ }^{1}$ Dept. of Mathematics, University of Kelaniya

