3.9 A simple analytical proof of Fermat's last theorem for $\mathbf{n}=\mathbf{5}$

R.A.D.Piyadasa

Department of mathematics ,University of Kelaniya
Kelaniya,Sri Lanka,E-mail:piyadasa54@yahoo.com

Abstract

It is well known that the proof of Fermat's last theorem (FLT) for any odd prime is difficult and lengthy. Proof of FLT for $n=5$ was shared by two eminent mathematicians, Dirichlet and Lagrange[1], [2]. However, their proof is rather lengthy and difficult as well known The main objective of this contribution is to give a simple analytical proof for Fermat's last theorem for this exponent. The proof is based on three simple lemmas used in case of $n=3$. Lemma. 1 If $(a, 5)=1=(b, 5)$ and $a^{5}-b^{5} \equiv 0\left(\bmod 5^{m}\right)$, then $m \geq 2$ and $a-b \equiv 0\left(\bmod 5^{m-1}\right)$. Since the proof is exactly the same as in case of $n=3$ [3], let us assume this Lemma. Lemma. 2 If the equation $$
\begin{equation*} z^{5}=y^{5}+x^{5},(x, y)=1 \tag{1} \end{equation*}
$$

has non-trivial integer solutions for the triple (x, y, z), then one of x, y, z is divisible by 5 . If one assumes that none of x, y, z is divisible by 5 , taking $y=5 m \pm 1,5 l \pm 2, x=5 k \pm 1,5 h \pm 2$, it can be easily shown that $x^{5}+y^{5} \equiv(0, \pm 2, \pm 6, \pm 8, \pm 11)\left(\bmod 5^{2}\right)$. But $z^{5} \equiv(1,-1,7,-7)\left(\bmod \left(5^{2}\right)\right.$. Therefore we deduce that one of x, y, z is divisible by 5 since $x^{5}+y^{5}=z^{5}$.
It is obvious that, without loss of generality, we can assume that all x, y, z are positive. Now, either z is divisible 5 or one of x, y is divisible by 5 . Then $x z$ or $y z$ is divisible by 5 . Hence, without loss of generality, we may assume that $y z$ is divisible by 5 .
Now, let $z=y+s$. Then (1) can be written as

$$
\begin{equation*}
5 s(y+s) y\left(y z+s^{2}\right)=x^{5}-s^{5} \tag{2}
\end{equation*}
$$

Also, any prime factor of s is a factor of x^{5} and s is co-prime with $y,(y+s),\left(y z+s^{2}\right)$. Therefore, s is a fifth power of an integer. Now, it is easy to verify that the terms $s, y,(y+s),\left(y z+s^{2}\right)$ are co-prime to one another. Also, $x-s=x+y-z$, which is even and coprime with $y z+s^{2}$. Let $s=t^{5}$ and $y z=q$ to write (2) as

$$
\begin{equation*}
q^{2}+t^{10} q-\frac{\left(c^{5}-t^{20}\right)}{5}=0 \tag{3}
\end{equation*}
$$

where it is assumed that $x=c . t$.Let $c=t^{4}+5^{m} n, q=5^{m} j$.It should be noted that the identity of the Fermat's equation $x+y-z=x-t^{5}$ contains the factors $t, 5^{m}$ and other two factors of y and z as exactly in the case of Fermat's last theorem for $n=3$ [3]. Then we can write (3) as

$$
\begin{equation*}
\left(t^{10}+2.5^{m} j\right)^{2}=\left[t^{20}+4 \frac{\left(c^{5}-t^{20}\right)}{5}\right] \tag{4}
\end{equation*}
$$

Now, it is easy to obtain

$$
\begin{align*}
& \left(t^{10}+2.5^{m} j\right)^{2}=\left[t^{10}+2.5^{m} t^{6} n+2.5^{2 m} t^{2} n^{2}\right]^{2}+4.5^{5 m-1} n^{5} \tag{5}\\
& \left(j-t^{6} n-5^{m} t^{2} n^{2}\right)\left(t^{10}+5^{m} j+5^{m} t^{6} n+5^{2 m} t^{2} n^{2}\right)=5^{4 m-1} n^{5} \tag{6}
\end{align*}
$$

Obviously, n can be a factor of j. Therefore it follows from (6) that

$$
\begin{align*}
& j-t^{6} n-5^{m} t^{2} n^{2}=5^{4 m-1} n^{5} \tag{a}\\
& t^{10}+5^{m} j+5^{m} t^{6} n+5^{2 m} t^{2} n^{2}=1^{5} \tag{b}
\end{align*}
$$

since n and t are co-prime. From (a) and (b), we obtan

$$
\begin{equation*}
1^{5}-t^{10}-2.5^{m}\left(n t^{6}+5^{m} n^{2} t^{2}\right)-5^{5 m-1} n^{5}=0 \tag{7}
\end{equation*}
$$

If $t=1$, it follows that $n=0$ or 5 divides n, which is a contradiction. Since all numbers in (7) are positive and $1^{5}-t^{10}<0$ when $t \neq 1$, we deduce that (7) is never satisfied. Hence, (1) has no non-trivial integer solutions.

References

(1) Paulo Ribenboim,Fermat's last theorem for amateurs, Spriger-Verlag-New York, 1999.
(2) Harold M.Edwards,Fermat's Last Theorem ,Springer-Verlag-New York,1977.
(3) Piyadasa R.A.D.,(2007) .Analytical proof of Fermat's last theorem for $\mathrm{n}=3$, Annual research symposium of faculty of graduate studies, University of Kelniya,Kelaniya. 127-128.

