3.7 On the integer roots of a special class of prime degree polynomial equations

R.A.D.Piyadasa Departmentof mathematics,Universiy of Kelaniya,Kelaniya, Kelaniya,Sri Lanka E-mail: Piyadasa54@yahoo.com

ABSTRACT

On the integer roots of a special class of prime degree polynomial equations

R.A.D.Piyadasa, Department of mathematics ,University of Kelaniya

(Dedicated to late professor C.R.Kulatilaka)

Integer solutions of polynomial equations are very important in many respects [1]. However, solutions of general polynomial equations of degree five or bigger than five cannot be solved in radicals as well known. Even in case of a simple polynomial equation $x^3 + 15xb + 28 = 0$, where (3,b) = 1, it may be difficult to discard the integer solutions without knowing the value of *b*. The theorem will be explained in the next section, is capable of discarding all integral solutions of this equation using only one condition (3,b) = 1. Also, it is useful to discard integer roots of a special class of prime degree polynomials as explained in this contribution.

Theorem and its proof.

 $x^{p} + pbx - c^{p} = 0$ has no integer solutions if (p,b) = (p,c) = 1, where b,c are any non zero integers and p is any prime. The equation $x^{p} + p^{m}bx - c^{p} = 0, m \ge 2$ has no integer solutions if $c \ne k(pa+1)$, where (p,b) = (p,c) = 1 = (b,c). Also, the equation $x^{p} + pbx + c = 0$ has no integer roots if $c = -a^{p} + p^{m}t$, $m \ge 2$, where (a, p) = (b, p) = 1.

Lemma.1

Let *p* be any odd prime and let *a*, *b* be any two non-zero integers satisfying (a, p) = (b, p) = 1. If $s = a^p \pm b^p \equiv 0 \pmod{p^{\mu}}$, then $\mu \ge 2$ and $a \pm b \equiv 0 \pmod{p^{\mu-1}}$. In particular if p = 2, then $2^3 \mid (a^2 - b^2)$.

Proof of Lemma.1

 $s = a^p - a \pm (b^p - b) + a \pm b$

Due to Fermat's little theorem, $p | (a^p - a) , p | (b^p - b)$ and since p | s, it follows that $a \pm b \equiv 0 \pmod{p}$.

Now, let p be any odd prime and $s = a^p - b^p$, $a - b = p^k t$, where (p, t) = 1, and $k \ge 1$.

$$s = (b + p^{k}t)^{p} - b^{p}$$

$$= (p^{k+1}t) \left[p^{kp-(k+1)}t^{p-1} + p^{kp-2k}t^{p-2}b + \dots + \frac{{}^{p}c_{r}}{p} p^{kp-(r+1)k}t^{r-1}b^{r} + \dots + b^{p-1} \right] = p^{\mu}x$$
(1)
(2)

since $s \equiv 0 \pmod{p^{\mu}}$, where (p, x) = 1. Obviously ${}^{p}c_{r} \equiv 0 \pmod{p}$ and therefore $\mu = k + 1$ since the term in the closed bracket is co-prime with p. Hence, $k + 1 = \mu$ and $\mu \ge 2$ since $k \ge 1$. The proof is almost exactly the same for the case $s = a^{p} + b^{p}$. If p = 2, then $2^{3} | (a^{2} - b^{2})$ since both a and b are odd and hence $a \pm b \equiv 0 \pmod{2}$ and one of a - b, a + b must be divisible 2^{l} , l > 1 due to (2, a) = 1 = (2, b).

Lemma.2

The real solutions of the polynomial equation

$$x^{n} + a_{1}x^{n-1} + a_{2}x^{n-2} + \dots + a_{n} = 0$$
(3)

of x and degree n with integral coefficients a_1, a_2, \dots, a_n are integers or irrational numbers. Proof of this lemma is simple and we assume this lemma without proof.

Proof of the theorem.

Theorem of our interest is

$$x^p + pbx - c^p = 0 \tag{4}$$

has no integer solutions.

By the Lemma.2, the equation has integer or irrational solutions. If this equation has an integer solution when (p,b) = (p,c) = 1, let it be x = l and (p,l) = 1 By substitution of this root in the equation, one obtains

$$l^p - c^p + pbl = 0 \tag{5}$$

By the lemma $p^2 | (l^p - c^p)$, and therefore p | b and this is a contradiction Therefore the equation has no integral root not divisible by p. If it has an integer root which is divisible by p, let $x = p^{\beta}k, (p,k) = 1$. Then, we have

$$p^{p\beta}k^{p} + p^{p+1}bk - c^{p} = 0 ag{6}$$

This is again a contradiction since (p, c) = 1, and hence the equation has no integer solutions for any odd prime p. In case of p = 2, (2, b) = (2, c)) = 1, and therefore both b, c are odd. Therefore (a-c), (a+c) are both even for any odd a and hence no any odd integer satisfies the equation since (2, b) = 1. It is clear that c in the equation (6) can be negative. Now, consider the equation

$$x^p + p^m b x - c^p = 0 \tag{7}$$

If (c, p) = 1, any integer root of this equation is also co-prime to p. Assume that an integer h satisfies the equation. Then $h^p + p^m bh - c^p = 0$. By Lemma.1, $h - c = p^{m-1}t$ for some t and since h should be a factor of c^p , h should be of the form $h = k^p$, where k is a factor of c. Therefore $k^p = c + p^{m-1}i$ and $k^p - k = c - k + p^{m-1}t$. Hence, c - k = pd for some d since $k^p - k$ is divisible by p due to Fermat's little theorem. Also, k is a factor of c and therefore d is divisible by k. Therefore c = k(pa + 1) for some a and if this condition is violated, that is,

if $c \neq k(pa+1)$, then the equation has no integer root k. Last part of the theorem follows at once from the Lemma.1.

The equation $x^3 + 15xb + 28 = 0$, (b,3) = 1 considered in the introduction of the paper can be written as

$$x^3 + 15xb + 1 + 3^3 = 0 \tag{8}$$

It is obvious that that any root x of this equation can not be divisible by 3 since (3,1) = 1. If x is not divisible by 3, then $x^3 + 1$ is divisible by 3^2 which contradicts (3,b) = 1. Hence the equation has no integer roots.

References

(1) Archbold, J.W. 1961 . Algebra , London Sir Issac Pitmann & Sons LTD . pp174.