3.7 On the integer roots of a special class of prime degree polynomial equations

R.A.D.Piyadasa
Departmentof mathematics,Universiy of Kelaniya,Kelaniya, Kelaniya,Sri Lanka
E-mail: Piyadasa54@yahoo.com

Abstract

On the integer roots of a special class of prime degree polynomial equations R.A.D.Piyadasa, Department of mathematics, University of Kelaniya (Dedicated to late professor C.R.Kulatilaka) Integer solutions of polynomial equations are very important in many respects [1]. However, solutions of general polynomial equations of degree five or bigger than five cannot be solved in radicals as well known. Even in case of a simple polynomial equation $x^{3}+15 x b+28=0$, where $(3, b)=1$, it may be difficult to discard the integer solutions without knowing the value of b. The theorem will be explained in the next section, is capable of discarding all integral solutions of this equation using only one condition $(3, b)=1$. Also, it is useful to discard integer roots of a special class of prime degree polynomials as explained in this contribution.

Theorem and its proof.

$x^{p}+p b x-c^{p}=0$ has no integer solutions if $(p, b)=(p, c)=1$, where b, c are any non zero integers and p is any prime .The equation $x^{p}+p^{m} b x-c^{p}=0, m \geq 2$ has no integer solutions if $c \neq k(p a+1)$, where $(p, b)=(p, c)=1=(b, c)$.Also, the equation $x^{p}+p b x+c=0$ has no integer roots if $c=-a^{p}+p^{m} t, m \geq 2$, where $(a, p)=(b, p)=1$.

Lemma. 1

Let p be any odd prime and let a, b be any two non-zero integers satisfying $(a, p)=(b, p)=1$. If $s=a^{p} \pm b^{p} \equiv 0\left(\bmod p^{\mu}\right)$, then $\mu \geq 2$ and $a \pm b \equiv 0\left(\bmod p^{\mu-1}\right)$. In particular if $p=2$, then $2^{3} \mid\left(a^{2}-b^{2}\right)$.

Proof of Lemma. 1

$$
s=a^{p}-a \pm\left(b^{p}-b\right)+a \pm b
$$

Due to Fermat's little theorem, $p\left|\left(a^{p}-a\right), p\right|\left(b^{p}-b\right)$ and since $p \mid s$, it follows that $a \pm b \equiv 0(\bmod p)$.
Now, let p be any odd prime and $s=a^{p}-b^{p}, a-b=p^{k} t$, where $(p, t)=1$, and $k \geq 1$.

$$
\begin{align*}
s & =\left(b+p^{k} t\right)^{p}-b^{p} \tag{1}\\
& =\left(p^{k+1} t\right)\left[p^{k p-(k+1)} t^{p-1}+p^{k p-2 k} t^{p-2} b+\cdots+\frac{{ }^{p} c_{r}}{p} p^{k p-(r+1) k} t^{r-1} b^{r}+\ldots \ldots . .+b^{p-1}\right]=p^{\mu} x \tag{2}
\end{align*}
$$

since $s \equiv 0\left(\bmod p^{\mu}\right)$, where $(p, x)=1$. Obviously ${ }^{p} c_{r} \equiv 0(\bmod p)$ and therefore $\mu=k+1$ since the term in the closed bracket is co-prime with p.Hence, $k+1=\mu$ and $\mu \geq 2$ since $k \geq 1$. The proof is almost exactly the same for the case $s=a^{p}+b^{p}$.If $p=2$, then $2^{3} \mid\left(a^{2}-b^{2}\right)$ since both a and b are odd and hence $a \pm b \equiv 0(\bmod 2)$ and one of $a-b, a+b$ must be divisible 2^{l}, $l>1$ due to $(2, a)=1=(2, b)$.

Lemma. 2

The real solutions of the polynomial equation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots \cdots+a_{n}=0 \tag{3}
\end{equation*}
$$

of x and degree n with integral coefficients $a_{1}, a_{2} \cdots \cdots a_{n}$ are integers or irrational numbers.
Proof of this lemma is simple and we assume this lemma without proof.

Proof of the theorem.

Theorem of our interest is

$$
\begin{equation*}
x^{p}+p b x-c^{p}=0 \tag{4}
\end{equation*}
$$

has no integer solutions.
By the Lemma.2, the equation has integer or irrational solutions. If this equation has an integer solution when $(p, b)=(p, c)=1$, let it be $x=l$ and $(p, l)=1 \quad$ By substitution of this root in the equation, one obtains

$$
\begin{equation*}
l^{p}-c^{p}+p b l=0 \tag{5}
\end{equation*}
$$

By the lemma $p^{2}\left(l^{p}-c^{p}\right)$, and therefore $p \mid b$ and this is a contradiction Therefore the equation has no integral root not divisible by p.If it has an integer root which is divisible by p, let $x=p^{\beta} k,(p, k)=1$. Then, we have

$$
\begin{equation*}
p^{p \beta} k^{p}+p^{p+1} b k-c^{p}=0 \tag{6}
\end{equation*}
$$

This is again a contradiction since $(p, c)=1$, and hence the equation has no integer solutions for any odd prime p. In case of $p=2, \quad(2, b)=(2, c))=1$, and therefore both b, c are odd. Therefore $(a-c),(a+c)$ are both even for any odd a and hence no any odd integer satisfies the equation since $(2, b)=1$. It is clear that c in the equation (6) can be negative.
Now, consider the equation

$$
\begin{equation*}
x^{p}+p^{m} b x-c^{p}=0 \tag{7}
\end{equation*}
$$

If $(c, p)=1$, any integer root of this equation is also co-prime to p.Assume that an integer h satisfies the equation. Then $h^{p}+p^{m} b h-c^{p}=0$.By Lemma.1, $h-c=p^{m-1} t$ for some t and since h should be a factor of c^{p}, h should be of the form $h=k^{p}$, where k is a factor of c.Therefore $k^{p}=c+p^{m-1} i$ and $k^{p}-k=c-k+p^{m-1} t$.Hence,$c-k=p d$ for some d since $k^{p}-k$ is divisible by p due to Fermat's little theorem. Also, k is a factor of c and therefore d is divisible by k.Therefore $c=k(p a+1)$ for some a and if this condition is violated, that is,
if $c \neq k(p a+1)$,then the equation has no integer root k. Last part of the theorem follows at once from the Lemma.1.

The equation $x^{3}+15 x b+28=0 \quad,(b, 3)=1$ considered in the introduction of the paper can be written as

$$
\begin{equation*}
x^{3}+15 x b+1+3^{3}=0 \tag{8}
\end{equation*}
$$

It is obvious that that any root x of this equation can not be divisible by 3 since $(3,1)=1$. If x is not divisible by 3 , then $x^{3}+1$ is divisible by 3^{2} which contradicts $(3, b)=1$.Hence the equation has no integer roots.

References

(1) Archbold,J.W. 1961 . Algebra ,London Sir Issac Pitmann \& Sons LTD . pp174.

