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ABSTRACT 

 
The internal space time due to a sphere of fluid with radius 0r  , can be expressed as, 

  22222λ22υ2 dφ  θsindθrdredtceds   ; where λ(r)  and  (r) υ are functions of the radial 

variables which must be determined from the field equations. We have solved the field equations 

and obtained an expression for the interior solution of an object when the fluid sphere has 

constant pressure 2

00 cρεP   and a constant density 0ρ , where ε0 is the permittivity of free space 

and c is the velocity of light in vacuum. The solution obtained is, 
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Then the proper volume of the sphere having the „radius‟ r is given by, 
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For the existence of the proper volume inside the solid sphere, „radius‟ r should be less than or 

equal to the R


. 

i.e. R r 
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The interior solution of any celestial object with constant density 
(1)

 obtained by Schwarzschild 

can be written as, 
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The proper volume of the object having the „radius‟ r is given by, 

 

For the existence of the 

proper volume inside the 

solid sphere „radius‟ r 
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We have also considered the case of a fluid with variable density,
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ρ  , We find that  
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Matching the interior solution with Schwarzschild exterior solution at 0rr  , „surface‟ of the fluid 
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 as expressed becan ρ  ; where 0M is the mass of the sphere as seen by an external 

observer. 

Then the proper volume can be expressed as, 
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For the existence of a real proper volume inside the solid sphere the term (
3
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1 ) should be non 

negative. 
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We conclude that in the case of ordinary matter applicable to the above cases the radius of the 

fluid sphere must be greater than the Schwarzschild radius. 
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