Interior solution to a celestial object

R.A.C.R.Rupasinghe ${ }^{1}$, Nalin de Silva ${ }^{2}$
Department of Physics ${ }^{1}$ Department of Mathematics ${ }^{2}$
University of Kelaniya

Abstract

With a suitable choice of coordinates the internal space time due to a sphere of fluid with radius r_{0}, can be expressed as, $\mathrm{ds}^{2}=\mathrm{e}^{\mathrm{v}} \mathrm{c}^{2} \mathrm{dt}^{2}-\left[\mathrm{e}^{\lambda} \mathrm{dr}^{2}+\mathrm{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi^{2}\right)\right]$; where $\mathrm{v}(\mathrm{r})$ and $\lambda(\mathrm{r})$ are functions of the radial variable r, which must be determined from the three field equations given below. $$
\begin{equation*} \rho=e^{-\lambda}\left(\frac{1}{r^{2}}-\frac{\lambda^{\prime}}{r}\right)-\frac{1}{r^{2}} \tag{1} \end{equation*}
$$ $\frac{C P}{c^{2}} \frac{1}{r^{2}}-e^{-\lambda}\left(\frac{1}{r^{2}} \frac{v^{\prime}}{r}\right)$ $\frac{C P}{c^{2}}=e^{-\lambda}\left[\frac{v^{\prime} \lambda^{\prime}}{4} \frac{v^{\prime 2}}{4} \frac{v^{\prime \prime}}{2} \quad \frac{\left(v^{\prime}-\lambda^{\prime}\right)}{2 r}\right]$

Where $C=\frac{-8 \pi G}{c^{2}}, G$ is the gravitational constant and c is the velocity of light in a vacuum.

Equation (1), (2) and (3) has been solved for constant density ρ_{0} with the condition $\mathrm{P}=0$ at the boundary ${ }^{(1)}$. In this presentation we solve the field equations to obtain an expression for the interior solution of an object when the fluid sphere has a constant density ρ_{0} and a variable pressure $\mathrm{P}(\mathrm{r})$, without taking $\mathrm{P}=0$ at the boundary.

By solving the equation (1), e^{λ} can be expressed as follows.

$$
\begin{equation*}
e^{\lambda} \frac{1}{1+\frac{C \rho_{0} r^{2}}{3}} \tag{4}
\end{equation*}
$$

Also e^{λ} can be expressed by solving the second and third equations as,

$$
\begin{align*}
& e^{\lambda}= \\
& \frac{\left(\frac{5 P}{c^{2}}+\rho_{0}-\frac{2}{r c^{2}} \frac{d\left(P r^{2}\right)}{d r}\right)}{\left(\rho_{0}+\frac{P}{c^{2}}\right)\left(1-\frac{C P r^{2}}{c^{2}}\right)} \tag{5}
\end{align*}
$$

By equating (1) and (2), the pressure inside the spherical rigid object can be expressed as,
$P(r)=\frac{\rho_{0} c^{2}}{3}\left(\frac{3 e^{k\left(1+\frac{\rho_{0} C r^{2}}{3}\right)^{-\frac{1}{2}}}-1}{1-e^{k\left(1+\frac{\rho_{0} C r^{2}}{3}\right)^{-\frac{1}{2}}}}\right)$
where $\mathrm{k}=$

$$
\begin{equation*}
\ln \left(\frac{\mathrm{P}_{0}+\frac{\rho_{0} c^{2}}{3}}{\mathrm{P}_{0}+\rho_{0} c^{2}}\right) \cdot\left(1+\frac{\rho_{0} C r_{0}^{2}}{3}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

By equating the coefficient of $d r^{2}$ expressed in the above interior solution to the
Schwarzschild exterior solution ${ }^{(1)}$ at the boundary the radius of the fluid sphere r_{0} can be expressed as,
$r_{0}=\left(\frac{3 m_{0} c^{2}}{4 \pi \rho_{0} G}\right)^{\frac{1}{3}}$
By solving the field equations (1), (2), (3) we obtain the following expression e^{v} in terms of $\mathrm{P}(\mathrm{r})$,
$\mathbf{1 1 0} \mid \mathrm{Pa} \mathrm{g} \mathrm{e}$ - Proceedings of the Research Symposium 2010-Faculty of Graduate Studies, University of Kelaniya
$e^{v}=\left(1-\frac{2 m_{0}}{r_{0}}\right)+\frac{\left(2+\frac{\left(P_{0}+P\right)}{\rho_{0} c^{2}}\right)\left(\frac{P_{0}-P}{\rho_{0} c^{2}}\right)}{\left(1+\frac{P}{\rho_{0} c^{2}}\right)^{2}\left(1-\frac{P_{0}}{\rho_{0} c^{2}}\right)^{2}}$
where P_{0} is the fluid pressure at the boundary. e^{v} can be expressed as a function of r , by substituting for P in (8), using (6).

References:

1. Alder Ronald, Bazin Maurice, Schiffer Menahem; Introduction to General Relativity; McGraw-Hill Book Company. (1965)
2. Misner Charles W., Thorne Kip S. , Wheeler John Archibald; Gravitation; W.H. Freeman and Company, San Francisco. (1970)
