Null Geodesics in de-Sitter Universe

J.A.N.K. Jayakody ${ }^{1}$, L.N.K. de Silva ${ }^{2}$
Department of Physics ${ }^{1}$, University of Kelaniya
Department of Mathematics ${ }^{2}$ University of Kelaniya

ABSTRACT

Consider the de-Sitter universe given by

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-e^{2 H t}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]^{[1]} \tag{1}
\end{equation*}
$$

which involves the cosmological constant.
Here H is the Hubble constant and $H=\sqrt{\frac{\Lambda}{3}} ; \Lambda$ is the cosmological constant.
For null-geodesics $d s^{2}=0$.

$$
\begin{equation*}
\text { Let } \quad d \mu^{2}=c^{2} d t^{2}-e^{2 H t}\left[d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{2}
\end{equation*}
$$

Dividing both sides of (2) by the element $d \mu^{2}$,

$$
\begin{equation*}
L=c^{2}\left(\frac{d t}{d \mu}\right)^{2}-e^{2 H t}\left(\frac{d r}{d \mu}\right)^{2}-e^{2 H t} r^{2}\left[\left(\frac{d \theta}{d \mu}\right)^{2}+\sin ^{2} \theta\left(\frac{d \phi}{d \mu}\right)^{2}\right]=0 . \tag{3}
\end{equation*}
$$

The equations of the null-geodesics can be written by using the Euler-Lagrange's equations

$$
\begin{equation*}
\frac{d}{d \mu}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \tag{4}
\end{equation*}
$$

where $x=(t, r, \theta, \phi)$ and dot denotes differentiation with respect to μ.
Considering the t coordinate,

$$
\begin{equation*}
\frac{d}{d \mu}\left[2 c^{2}\left(\frac{d t}{d \mu}\right)\right]+2 H e^{2 H t}\left(\frac{d r}{d \mu}\right)^{2}+2 H e^{2 H t} r^{2}\left[\left(\frac{d \theta}{d \mu}\right)^{2}+\sin ^{2} \theta\left(\frac{d \phi}{d \mu}\right)^{2}\right]=0 \tag{5}
\end{equation*}
$$

Considering the θ coordinate,

$$
\begin{equation*}
\frac{d}{d \mu}\left[-2 e^{2 H t} r^{2}\left(\frac{d \theta}{d \mu}\right)\right]+2 e^{2 H t} r^{2} \sin \theta \cos \theta\left(\frac{d \phi}{d \mu}\right)^{2}=0 \tag{6}
\end{equation*}
$$

Considering the ϕ coordinate,
$\mathbf{1 0 6}$ | P a g e - Proceedings of the Research Symposium 2010-Faculty of Graduate Studies, University of Kelaniya

$$
\begin{equation*}
\frac{d}{d \mu}\left[-2 e^{2 H t} r^{2} \sin ^{2} \theta\left(\frac{d \phi}{d \mu}\right)\right]=0 \tag{7}
\end{equation*}
$$

Since $d s=0$, for null-geodesics we also have

$$
\begin{equation*}
c^{2}\left(\frac{d t}{d \mu}\right)^{2}-e^{2 H t}\left(\frac{d r}{d \mu}\right)^{2}-e^{2 H t} r^{2}\left[\left(\frac{d \theta}{d \mu}\right)^{2}+\sin ^{2} \theta\left(\frac{d \phi}{d \mu}\right)^{2}\right]=0 \tag{8}
\end{equation*}
$$

These are the null-geodesics equations of the de-Sitter space-time.
Equation (6) is satisfied by $\theta=\frac{\pi}{2}$.

From (5),

$$
\begin{equation*}
\frac{d}{d \mu}\left[2 c^{2}\left(\frac{d t}{d \mu}\right)\right]+2 H e^{2 H t}\left(\frac{d r}{d \mu}\right)^{2}+2 H e^{2 H t} r^{2}\left(\frac{d \phi}{d \mu}\right)^{2}=0 \tag{9}
\end{equation*}
$$

From (7),

$$
\begin{align*}
& \frac{d}{d \mu}\left[-2 e^{2 H t} r^{2}\left(\frac{d \phi}{d \mu}\right)\right]=0 \\
& -2 e^{2 H t} r^{2}\left(\frac{d \phi}{d \mu}\right)=c_{1} \quad ; \quad \text { where } c_{1} \text { is a constant } \\
& d \mu=\frac{-2 e^{2 H t} r^{2}}{c_{1}} d \phi \tag{10}
\end{align*}
$$

From (8),

$$
\begin{equation*}
c^{2}\left(\frac{d t}{d \mu}\right)^{2}-e^{2 H t}\left(\frac{d r}{d \mu}\right)^{2}-e^{2 H t} r^{2}\left(\frac{d \phi}{d \mu}\right)^{2}=0 \tag{11}
\end{equation*}
$$

From (9) and (10), we obtain,

$$
\begin{equation*}
\left(\frac{d r}{d \phi}\right)^{2}=-\left(\frac{d^{2} t}{d \mu^{2}}+\frac{H c_{1}^{2}}{4 c^{2} e^{2 H t} r^{2}}\right) \frac{4 c^{2} e^{2 H t} r^{4}}{H c_{1}^{2}} \tag{12}
\end{equation*}
$$

From (10) and (11), we have,

$$
\begin{equation*}
\left(\frac{d r}{d \phi}\right)^{2}=\left[\left(\frac{d t}{d \mu}\right)^{2}-\frac{c_{1}^{2}}{4 c^{2} e^{2 H t} r^{2}}\right] \frac{4 c^{2} e^{2 H t} r^{4}}{c_{1}^{2}} \tag{13}
\end{equation*}
$$

(12) and (13) give,

$$
\frac{1}{H}\left(\frac{d^{2} t}{d \mu^{2}}\right)+\left(\frac{d t}{d \mu}\right)^{2}=0
$$

Let $\frac{d t}{d \mu}=p$. Then $\frac{d^{2} t}{d \mu^{2}}=p \frac{d p}{d t}$
Let $p^{2}=v$. Then $2 p \frac{d p}{d t}=\frac{d v}{d t}$ and finally we have,

$$
\begin{equation*}
\frac{d t}{d \mu}=\sqrt{e^{-\left(2 H t+c_{2}\right)}} \quad ; \quad \text { where } c_{2} \text { is a constant } \tag{14}
\end{equation*}
$$

From (13) and (14), substituting $r=\frac{1}{u}$ we obtain

$$
\begin{aligned}
& \frac{d u}{d \phi}=\sqrt{\frac{4 c^{2} e^{-c_{2}}}{c_{1}^{2}}}-u^{2} \\
& \sin ^{-1} \frac{u}{\sqrt{\frac{4 c^{2} e^{-c_{2}}}{c_{1}^{2}}}}=\phi+c_{3} \quad ; \quad \text { where } c_{3} \text { is a constant. } \\
& u=\frac{2 c}{c_{1}} \sqrt{e^{-c_{2}}} \sin \left(\phi+c_{3}\right)
\end{aligned}
$$

Thus the equation of a null geodesic in de Sitter universe is given by the above expression which agrees with the equation $u=\left(\frac{E^{2}}{h^{2}}+\frac{\Lambda}{3}\right)^{\frac{1}{2}} \sin (\phi+A)^{[2]}$ we had in the case of Schwarzschild - de Sitter metric with $m=0$, after identifying the corresponding constants.

References

[1] Narlikar, J.V., (1993) 'Introduction to Cosmology', Cambridge University Press.
[2] Jayakody, J.A.N.K., de Silva, L.N.K. 'Path of a light ray near a body with cosmological constant', $10^{\text {th }}$ Annual Research Symposium 2009, University of Kelaniya (2009).

108
| P a g e - Proceedings of the Research Symposium 2010-Faculty of Graduate Studies, University of Kelaniya

