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Abstract Site investigation is crucial in character-
izing the geomaterial profile for the design of bridge 
pile foundations. A site investigation plan should be 
conducted to maximize geomaterial information and 
minimize uncertainty. Thus, both geological and 
property uncertainties should be explicitly incorpo-
rated into a site investigation plan. This leads to the 
question of how to choose the corresponding optimal 
number and location of boreholes in a multiphase 
site investigation plan in order to reduce these uncer-
tainties. This study addresses these problems using 
multinomial categorical prediction and universal 
kriging on a random field with multiple simulations. 

Site investigation data for this study are taken from 
a bridge project in Iowa, USA, which consists of 
four boreholes, each within the proximity of the pile 
foundation location. Subsequent numbers of recom-
mended boreholes and their associated locations are 
determined to minimize the combined uncertain-
ties. The effectiveness of this combined analysis for 
determining an optimal site investigation plan (OSIP) 
is validated and compared to an analysis done solely 
on property uncertainty. The proposed OSIP yields 
a lower prediction error, improves the prediction of 
geomaterial type and property, and reduces the sub-
surface uncertainties. The incorporation of OSIP 
invariably improves the design efficiency and perfor-
mance of bridge pile foundations.

Keywords Geostatistics · Geological uncertainty · 
Property uncertainty · Site investigation · Simulation
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PU  Property uncertainty
PUGU   Property uncertainty and geological 

uncertainty
RMSE  Root mean square error
SD  Standard deviation
spMC  Spatial Markov chains
SPT  Standard penetration test
UK  Universal kriging

1 Introduction

Site investigation is an essential aspect of geotechni-
cal design. Two main classes of geomaterial-related 
information are obtainable from the sampling aspect 
of site investigation, namely the (1) geomaterial prop-
erty where the data consists of a quantitative geotech-
nical response, and (2) geomaterial type where the 
data consists of categorical geomaterial classification. 
Hence, an adequate geospatial model requires the 
specification of these two uncertainties (Bock 2006). 
Property uncertainty refers to uncertainty due to the 
prediction of a geomaterial property at the unsampled 
locations of the site. It is closely related to inherent 
variability which is the difference between a geoma-
terial property from one spatial location to another 
(Liao et al. 2022; Mendoza and Hurtado 2022; Zhang 
et  al. 2023). Geological uncertainty is the change-
ability due to one geomaterial embedded in another, 
especially at the boundaries between different geoma-
terial layers (Oluwatuyi et al. 2023a, b). To obtain an 
optimal site investigation plan (OSIP), emphasis must 
be placed on reducing both forms of uncertainties. 
Moreover, an OSIP obtained from the analysis of both 
forms of uncertainties will result in a better prediction 
of the geomaterial property for pile foundation design 
(Juang et al. 2019). However, geological uncertainty 
has been ignored in previous OSIP studies (Abdu-
lai and Sharifzadeh 2019; Oluwatuyi et  al. 2022a; 
Zhang et  al. 2022). In the risk assessment analysis 
for soft-ground tunneling, the influence of geological 
uncertainty is integrated into the spatial modeling of 
geomaterial property uncertainty to aid in engineer-
ing decision-making (Grasmick et  al. 2020). Accu-
rate characterization of the geomaterial boundaries 
(geological uncertainty) using probabilistic tools can 
result in a better evaluation of slope reliability (Deng 
et al. 2017) and landslide stability (Wang et al. 2018; 
Gong et al. 2020).

Another difficulty in the geotechnical characteriza-
tion of a site is the determination of the optimal num-
ber and location of boreholes specifically for a bridge 
project. To conduct a site investigation, one needs to 
consider the: (1) borehole depth; (2) the number of 
drilled boreholes; (3) the locations and spacings of 
the boreholes to be drilled, for a thorough and well-
organized site investigation (Jelušič and Žlender 
2014). In practice, site investigation plans are based 
on budget, local experience, or procedures specified 
by codes. For example in the United States, AASHTO 
(2020) specifies a minimum of two boreholes per 
bridge pier or abutment for a bridge with a width 
greater than 30  m. In Australia, the recommenda-
tion of a borehole at every 30 m is specified by the 
Austroads Bridge Design Code (Wedgwood 1992). 
The summary of these open-ended design codes is a 
specification of uniformly spaced boreholes that are 
not directly based upon uncertainty or cost-efficiency. 
A site investigation plan based on the design code, 
or one determined empirically on time, budget, and 
experience can be inefficient because it does not 
account for prior information from the specific pro-
ject site. The optimal number of boreholes on site A 
might be inappropriate or drilled at the wrong loca-
tions for site B. Hence, site-specific determination of 
the optimal number and location of boreholes for the 
design of bridge pile foundations remains a largely 
unsolved problem. The use of geostatistical/com-
putational approaches to predict geomaterial infor-
mation, quantify its uncertainties, and optimize site 
investigation had been discussed in recent studies. 
Efficient sampling locations for one-dimensional site 
characterization are determined by using information 
entropy and Bayesian compressive sampling (Zhao 
and Wang 2019). The accuracy of identifying and 
drilling horizontal wells from high-quality marine 
shale gas reservoirs is improved upon by Zhu et  al. 
(2021) through the use of the oversampling method 
and random forest algorithm. A general guide to opti-
mizing site investigations for pile design in a single 
layer of soil was proposed by Crisp et  al. (2020). 
The study by Shi and Wang (2021) focused on the 
site’s geological uncertainty as obtained through 
multiple-point statistics and information entropy 
in the determination of borehole numbers and loca-
tions for slope stability analysis. Žlender et al. (2012) 
predicted, optimized, and spaced borehole drillings 
by using artificial intelligence techniques. However, 
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optimization in these recent studies is either restricted 
to the property or geological uncertainty of the site. 
Both geological and property uncertainties should be 
addressed concurrently (Boumezerane et  al. 2014; 
Han et al. 2020; Mazraehli and Zare 2022). Thus, this 
present study presents a combined analysis of both 
uncertainties to optimize the site investigation plan.

This study is aimed at optimizing the site inves-
tigation plan by interpolating the subsurface stratig-
raphy and predicting geomaterial property of inter-
est from sparse preliminary borehole data taken at a 
multilayered site. The proposed procedure quantifies 
geological and property uncertainties and implements 
a site investigation plan to reduce these uncertainties. 
The methodology involves random fields to obtain 
multiple simulations based upon universal kriging 
(UK) to predict the geomaterial property and multi-
nomial categorical prediction (MCP) based upon spa-
tial Markov Chains (spMC) to predict the geomaterial 
type. The predictions and the associated uncertain-
ties, as quantified in terms of standard deviation (SD), 
are then used in determining an OSIP. The study 
involves several key contributions (1) Three-dimen-
sional (3D) analysis of sparse actual borehole data is 
utilized to predict the project subsurface condition (2) 
Geological uncertainty is incorporated into the analy-
sis through refined geomaterial layer boundaries such 
that all resulting layers can be analyzed with differ-
ent geomaterial means. By combining the layers this 
way, it is possible to gain important information on 
the spatial structure of the whole subsurface while 
also improving geomaterial property prediction at the 
unsampled locations of the random field. The impact 
of incorporating geological uncertainty is examined 
by comparing results to when its incorporation is 
ignored (3) The OSIP is determined to reduce geo-
logical and property uncertainties through the geo-
statistical analysis of pre-existing borehole data from 
a bridge site. In the absence of pre-existing borehole 
data, borehole data are advised to be collected within 
the proximity of the proposed pile foundation (Golds-
worthy et  al. 2007; Arsyad et  al. 2010). Subsequent 
borehole locations are selected to reduce the SD of 
the predicted geomaterial property. The process is 
repeated until the reduction effect is minimal and not 
worth the cost of the additional borehole. The con-
cept behind OSIP is that of the multiphase site inves-
tigation, whereby the initial boreholes are drilled in 
the preliminary site investigation (preferably at the 

proposed foundation footprint) and the recommended 
boreholes are drilled in the subsequent detailed site 
investigation.

The paper is organized as follows. Section 2 pre-
sents the techniques and methods used in the imple-
mentation of geological uncertainty and property 
uncertainty to determine OSIP for bridge design. Sec-
tion 3 presents the background of a case study. Sec-
tion 4 compares the results with that of a recent study 
and validates the uncertainty simulation and quantifi-
cation. The results and discussions from the analyses 
of the case study are presented in Sect.  5. Conclu-
sions are given in Sect. 6.

2  Methodology

It is typically impossible to directly ascertain the 
geotechnical properties and the geomaterial types 
throughout the whole study site based on limited 
borehole data. However, a random field can be uti-
lized to predict geomaterial types and properties at 
unobserved locations. The uncertainties associated 
with these predictions can be reduced through the 
determination of OSIP. Hence, a plan (which consists 
of the number and location of boreholes) is consid-
ered optimal if it minimizes uncertainties with a rea-
sonable site investigation cost to achieve an efficient 
bridge design.

2.1  Geological Uncertainty

The process of analyzing geological uncertainty fol-
lows that of Oluwatuyi et  al. (2023b). For a discre-
tized grid on a random field, consider Z(s) as the cat-
egorical random variable for a geomaterial type at a 
spatial location s . Consider another spatial location 
s + h where h is the multidimensional lag and ‖h‖ is 
the Euclidean distance between s and s + h (Sartore 
et al. 2016). The transition probability tij(h) of going 
from geomaterial type zi to another zj is.

where i, j = 1, 2,… , nt , and nt is the number of geo-
material types (layers). The collection of transition 
probabilities tij(h) in Eq. (1) across all i, j is given by 
the nt × nt transition probability matrix, T(h) as

(1)tij(h) = Pr
(
Z(s + h) = zj

||Z(s) = zi
)
,



 Geotech Geol Eng

1 3
Vol:. (1234567890)

where Rh is the transition rate matrix which depends 
on the direction given by the lag h . The random pro-
cess of the continuous-time Markov chain will change 
from one geomaterial type to another according to the 
exponential function and as specified by the probabil-
ities in the transition matrix. Carle and Fogg (1997) 
express the elements Rek

 of the transition rate matrix 
Rh in Eq. (2) as

where k = 1, 2,… , d for d dimensions, ek is the stand-
ard basis vector for the direction indexed by k , Li,ek 
is the mean stratum thicknesses of the geomaterial 
type i along the direction ek , diag denotes a diagonal 
matrix with entries Li,ek , Fek

 is the transition proba-
bility matrix consisting of probabilities for consecu-
tive grids with the same geomaterial type along the 
direction ek , and I is the identity matrix The transition 
rate ( rij,h ) in row i  and column j of the transition rate 
matrix Rh in Eq. (2) is calculated as

where rij,ek denotes row i  and column j of  Rek
 in Eq. 

(3), rij,h is non-positive when i = j , and rij,h is non-
negative when i ≠ j.

To predict a geomaterial type at an unknown spa-
tial location ( s0 ), an approximation of the conditional 
probability using multinomial categorical prediction 
in Eq. (5) is approximated as

where pj is the proportion in category j and 
tikl

(
s0 − sl

)
 represents the transition probability as 

defined in Eq. (1) from geomaterial type zi to another 
zj for observation with index l . Monte Carlo simu-
lation (MCS) is thereafter applied to the predicted 
subsurface to propagate the uncertainty in the predic-
tions. The conditional probabilities over the multiple 
simulations at each spatial location are then converted 
to information entropy to quantify the geological 
uncertainty (Wellmann and Regenauer-Lieb 2012). 

(2)T(h) = exp
�
‖h‖Rh

�
,

(3)Rek
= diag

(
{Li,ek}

)−1(
Fek

− I
)
,

(4)���rij,h
��� =

�
d�

k=1

�
hk

‖h‖
rij,ek

�2
�1∕2

,

(5)qj
�
s0
�
≈

pj
∏n

l=1
tjkl

�
s0 − sl

�

∑nS
i=1

pi
∏n

l=1
tikl

�
s0 − sl

� ,

Consider a randomized simulation Hm(s0) calculated 
at a spatial location s0 using an approximation of the 
conditional probability qj,m

(
s0
)
 in Eq. (5) for one sim-

ulation indexed by m out of the multiple simulations 
nM . The corresponding equation is given by

The location average information entropy, H
(
s0
)
 

is obtained at a spatial location by taking the mean 
of the information entropy values in Eq. (6) summed 
across ng which is the number of different geomate-
rial types. The logarithm is taken at a base equal to 
the number of the different geomaterial types. From 
the quantification of geological uncertainty, the strati-
graphic boundaries are evaluated as continuous spa-
tial positions with high values of mean information 
entropy.

2.2  Property Uncertainty

The process of analyzing geomaterial property 
uncertainty follows that of Oluwatuyi et al. (2022a). 
However, in this study, that process is carried out for 
each simulation of the geomaterial layer boundaries 
described in Sect.  2.1. By simulating the geomate-
rial properties using the proposed methodology, geo-
logical and property uncertainties can be analyzed 
collectively.

As in Oluwatuyi et  al. (2022a), consider the ran-
dom vector for a geomaterial property (�) where 
the covariance matrix of that geomaterial property 
is ∁(�) = � . The covariance matrix Σ is important to 
account for the spatial correlation structure. The spa-
tial correlation function is specified via H(ρ) as

where � represents the range parameter and �2 rep-
resents the partial sill. The exponential correla-
tion function for H(�) is used in this study because 
of its smaller information criteria value, simplicity, 
and application in a previous study (Oluwatuyi et al. 
2022a). The exponential correlation function is

To predict the geomaterial property at an unob-
served spatial location ( s0 ), the best linear unbiased 
prediction for universal kriging is given by

(6)Hm(s0) = −
∑ng

j=1
qj,m

(
s0
)
logngqj,m

(
s0
)

(7)� = �2H(�)

(8)H(�) = exp(−h∕�)
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where s contains the observed spatial locations, �̂ 
is the estimate of the regression coefficient vector � 
obtained from generalized least squares, �̂ = �̂2H

(
�̂
)
 

is the restricted maximum likelihood estimate of the 
covariance matrix � , x

(
s0
)
 is the value of the design 

matrix at s0 , y(s) is the vector of the geomaterial prop-
erty values at s , and v̂ is a vector of covariances with 
entries ĉov

(
Y
(
s0
)
,Y

(
si
))

 for i = 1,… ., n (Pebesma 
2004; Bivand et al. 2008).

Conditional simulation is conducted on each of the 
multiple simulations predicting the geomaterial type 
(as described in Sect.  2.1) to account for the uncer-
tainties associated with the plug-in estimates used to 
perform universal kriging. The conditional simula-
tion produces realizations that match the data at the 
observed locations by working with the conditional 
distribution given by the data (Bivand et  al. 2008). 
In this way, the uncertainties in both the predicted 
geomaterial type and the predicted geomaterial are 
simultaneously propagated into additional analyses 
involving the bridge design.

2.3  Optimal Site Investigation Plan

The algorithm to obtain OSIP is implemented in the 
R program (R Core Team 2021). Inputs needed for 
the algorithm include the 3D random field measure-
ment, transverse-longitudinal coordinates of the bore-
holes, the observed geomaterial type, and the geoma-
terial property of interest at each subsurface depth 
examined. The procedure for determining the OSIP 
for bridge design through the combined analysis of 
geological and property uncertainties is summarized 
in Fig. 1. In general, this procedure consists of twelve 
steps detailed as follows:

 1. Discretize the design relevant bridge domain (or 
random field) into a 3D grid with a computa-
tionally efficient grid scheme.

 2. Set out the geomaterial types as disclosed by the 
boreholes to the corresponding grid position. 
This information is conditional for the predic-
tion of the geomaterial type and for quantifying 
the geological uncertainty.

 3. Based on the borehole data, estimate the 3D 
transition rates and probabilities using spatial 

(9)ŷ
(
s0
)
= x

(
s0
)�
�̂� + v̂��̂

−1
(
y(s) − X𝜷

)
,

Markov Chains (Fabbri et  al. 2020; Oluwatuyi 
et al. 2022b).

 4. Predict the geomaterial types at unsampled loca-
tions of the discretized bridge domain using 
MCP and simulate geological uncertainty multi-
ple times using MCS to generate several realiza-
tions.

 5. Describe the stratigraphic boundaries of each 
different realization as obtained from the multi-
ple simulations of geological uncertainty in step 
4.

 6. Set out the geomaterial property as disclosed by 
the boreholes to the described geomaterial strat-
ification of the discretized bridge.

 7. Log transform the geomaterial property and fit 
the spatial model with spatial correlation struc-
ture estimated based on the borehole data.

 8. Predict using the UK and conditionally simulate 
the geomaterial property values at unsampled 
locations of the discretized and geomaterial type 
stratified bridge domain.

 9. Repeat steps 6–8 for the stratigraphic bounda-
ries of each different realization generated in 
step 4.

 10. The sample mean and SD for each geomate-
rial type or layer depth are summarized across 
all conditional simulations and sampling loca-
tions of the four actual boreholes shown in the 
x–y axis on the left portion of Fig. 2. The SD is 
then used to assess the combined geological and 
property uncertainties for a given site investiga-
tion plan.

 11. As shown in the heatmap on the right portion 
of Fig.  2, the resultant uncertainty of adding a 
subsequent new borehole to the actual boreholes 
at every possible location on the subsurface is 
evaluated. The recommended subsequent bore-
hole is selected as the x–y location on the sub-
surface grid or heatmap with the lowest SD.

 12. The actual borehole data is updated with data 
from the recommended borehole, and steps 10 
and 11 are repeated until the SD is reduced to a 
point where further reduction is no longer cost-
effective. The selection of the optimal number 
of boreholes can be visualized with a scree plot 
where SD (uncertainty) is plotted against the 
number of boreholes (cost) as shown in Fig. 3.
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The computational time for OSIP depends on sev-
eral factors including the study site area, the use of 
3D analysis, discretized grid size selected, the num-
ber of multiple simulations selected to propagate the 
uncertainties, and the computational power of the 
computer system. For piles bearing on soft rocks or 
intermediate geomaterials (IGMs), a minimum of 
4.5  m depth of continuous bedrock or IGM core is 
recommended. Alternatively, the borehole is termi-
nated at a maximum depth of 30 m (AASHTO 2020). 
Discrete in-situ tests, like the standard penetration test 
(SPT), and sampling for laboratory tests are recom-
mended to be taken at every 1.5 m depth (Oluwatuyi 
et  al. 2022a). OSIP determination in this study is 

not directly related to the response of the bridge pile 
foundation. This is because the degree of uncertainty 
in the geomaterial properties is higher and difficult 
to characterize compared to that of the structural 
component. Moreover, details of the structural com-
ponent, such as pile size and the load imposed, may 
not be available at the time of planning and execut-
ing the subsurface investigation. This is in line with 
current engineering practice where the subsurface 
investigation is usually done before geotechnical and 
structural design. However, with the minimization of 
geological and property uncertainties through OSIP, a 
more accurate prediction of the geomaterial property 
can be obtained. With a more accurate prediction and 

Fig. 1  Flowchart of an 
optimal site investigation 
plan for bridge design 
considering both geological 
and property uncertainties
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quantifiable subsurface uncertainties, the proposed 
OSIP procedure can be incorporated into the frame-
work of the load and resistance factor design for the 
bridge foundation (Oluwatuyi et al. 2023a).

3  Case Study

The data for this study is from the SPT conducted 
on the project site by the Iowa Department of 

Transportation (IADOT) to replace an existing US 
63 bridge and culverts over a drainage ditch about 
0.3 miles south of Ottumwa, Wapello County, Iowa. 
Eight boreholes are drilled on the project site as 
shown in Fig.  4. SPT is a common in-situ test used 
by engineers to obtain geomaterial samples from the 
boreholes and its N-value is an indirect measurement 
of geomaterial resistance. The N-value is the number 
of hammer blows per m by which a 63.5 kg hammer 
with a 0.75  m drop height can drive a split spoon 
sampler 0.3  m into the geomaterial. For the shale 
(IGM) layer, a full 0.3 m penetration is not achieved 

Fig. 2  Pictorial explanation of subsequent recommended borehole selection for OSIP (plus sign implies combination and not sum-
mation)

Fig. 3  Pictorial explanation of actual and recommended bore-
holes that determine the optimal number of boreholes (Ng 
et al. 2023)

Fig. 4  Eight boreholes at the bridge site in Wapello County, 
Iowa (Ng et al. 2023)
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by the sampler. Hence, measured blows are linearly 
extrapolated using the procedure described in Olu-
watuyi et  al. (2022a) for comparable and consistent 
analysis. In Sect.  5 of this paper, a total of 46 SPT 
N-values from the four boreholes in proximity to the 
four bridge foundation locations are used as shown 
in Fig. 5. The foundation locations on the study site 
are namely north abutment (N. ABUT.), center pier 
1 (C. PIER. 1), center pier 2 (C. PIER. 2), and south 
abutment (S. ABUT.). The four remaining boreholes 
expunged from the OSIP analysis are used as validat-
ing data. Also, their relative locations are compared 
with the subsequently recommended boreholes from 
the OSIP analysis. The subsurface is characterized 
according to the borehole data into four geomaterial 
layers with layer 1 consisting of dark brown-gray stiff 
clay (denoted as Clay), layer 2 consisting of brown-
gray clayey/fine sand to coarse sand, (denoted as 
Sand), layer 3 consisting of the gray firm to stiff silt 
with brown firm sand clay with brown-gray firm clay 
and gravel (denoted as Silt), and layer 4 as the IGM 
layer consisting of gray slightly to moderately weath-
ered shale (Shale).

The idea behind the method for OSIP proposed in 
this study is to take the borehole data from the prelim-
inary site investigation and analyze it for spatial posi-
tions that will reduce uncertainty for all layers or a 
target layer. The actual borehole data from the prelim-
inary site investigation is recommended to be taken 

in proximity to the proposed foundation to reduce the 
uncertainties that may be propagated to the design. 
However, it should be noted that the preliminary site 
investigation of locating boreholes in the proximity of 
the foundation is not sufficient for a design as there 
are still unknowns (uncertainties) within the site. 
Also, piles are designed and constructed in groups, 
and borehole information can at best be limited to 
the design of a pile closest to the borehole. The 3D 
random field for the study site has dimensions + 66 m 
by + 30 m by − 24 m for the x, y, and z axes, respec-
tively. The negative sign in the z-axis indicates depth 
below the ground surface. The SPT N-values are log 
transformed as is typical with geomaterial proper-
ties due to their wide range of values (Grasmick et al. 
2020; Oluwatuyi et al. 2022a).

4  Model Comparison and Validation

4.1  Model Comparison

The model considering both geological and property 
uncertainties in determining an OSIP in Sect.  2 of 
this present study is compared to the related model 
where only property uncertainty is considered. 
Twelve boreholes comprised of eight actual pre-
liminary boreholes (Fig.  4) and four recommended 
boreholes initially determined for uncertainty reduc-
tion for a bridge project in Wapello County Iowa are 
analyzed for their uncertainties using the model in 
the present study. The uncertainties in terms of SDs 
present in each layer are compared for the conditional 
simulation as shown in Fig. 6. The term ‘discrepan-
cies’, denoted as DISC, in Fig. 6 is a measure of the 
difference in the quantified uncertainties between the 
present study considering both geological and prop-
erty uncertainties denoted as PUGU and one consid-
ering only property uncertainty denoted as PU. The 
uncertainty discrepancies in both models for layers 1, 
2, and 4 as earlier described in Sect. 3 are within ± 0.1 
with an increase in the number of boreholes. How-
ever, for layer 3, the uncertainty discrepancy is as 
high as 0.3 at three boreholes. These high discrepan-
cies in the quantified uncertainties from both models 
for layer 3, which is the transitional layer before the 
Shale layer (layer 4), may be due to the thinness of 
the layer as revealed by the boreholes in Fig. 5. Inter-
estingly, for layer 3, the uncertainty discrepancy is as 

Fig. 5.  46 SPT N-values in four geomaterial layers as 
observed from the four drilled boreholes in proximity to the 
foundation locations of the study site (Ng et al. 2023)
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low as 0.02 at six boreholes which is the same as the 
optimal number of boreholes recommended for the 
study considering property uncertainty alone (Olu-
watuyi et al. 2022a). The true effect of incorporating 
geological uncertainty may not be truly known unless 
predictions from both models are validated.

4.2  Model Validation

Validation of a model can provide important 
insights into the practical viability of resulting pre-
dictions. The geomaterial property from observed 
borehole data 

(
yij
)
 is used to assess the model pre-

diction accuracy since these observations give 
the measured value of the geomaterial property 
response. Here, j = 1, 2,… , b indexes b boreholes 
and i = 1,… , nb indexes nb observations within a 
borehole. Leave one-out cross validation (LOOCV) 
is used because it will be performed on the entire 
data resulting in the estimation of the same test 

error. LOOCV is also important in this study since 
there is no comparable test data available for the 
site. For the application of LOOCV, the data is first 
split into two parts where one part is the training 
data which consists of all the observed boreholes, 
except for the one borehole used in the second part 
for testing data. The training data is used to predict 
the geotechnical property for the nb observations 
within the testing borehole 

(
ŷ(ij)

)
 and compared to 

the observed or measured geotechnical property 
for the testing borehole 

(
y(ij)

)
 . The process is then 

repeated for each of the b available boreholes. The 
combined evaluation of these predictions involving 
the testing boreholes is obtained by the root mean 
squared error ( RMSE) in Eq. 10. The predicted geo-
material property on the subsurface is used because 
it is more suitable to assess model accuracy through 
it rather than a smoothened mean estimate from 
multiple simulations (Goovaerts 2001). Bias is also 
calculated for the geomaterial property prediction 

Fig. 6  PU and PUGU model comparison in the different geomaterial layers (Ng et al. 2023)
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in each observation within a borehole. The bias for 
each test is defined by Eq. 11.

The model accuracy plot with the bias distribu-
tion of the PUGU and PU models and the corre-
sponding RMSE is shown in Fig.  7. The bias dis-
tribution plot shows that the PUGU model had its 
mean bias value equal to 1. The coefficient of vari-
ation (COV) of the bias in the PUGU model is 0.09 
compared to 0.14 in the PU model. The trend is 
also consistent with the RMSE obtained from the 
cross validation where the PUGU model has a lower 
mean prediction error of 0.18 compared to the 0.34 
obtained from the PU model. In other words, con-
sideration of geological uncertainty in the predic-
tion of geomaterial property decreases the predic-
tion error on an average from 34 to 18%. Worthy of 
note is the high RMSE value recorded when bore-
hole 6 is used as the testing data. Recall, that six 
boreholes are recommended as the optimal number 
of boreholes by Oluwatuyi et al. (2022a).

(10)RMSE =
1

b

b∑

j=1

[
1

nb

nb∑

i=1

(
ŷ(ij) − y(ij)

)2
] 1

2

(11)Bias(ij) =
y(ij)

ŷ(ij)

5  Results and Discussion

5.1  Geomaterial Type Prediction

The estimate of the transition rate matrices in Eq. 3 
using the borehole data is presented in Table  1. 
From these transition rates, the transition probabili-
ties are estimated using Eq. 2. A transiogram model 
is fit to the estimated transition probabilities in the 
Z-direction (depth) as shown in Fig.  8. The tran-
siogram is analogous to the variogram used in the 
prediction of a geomaterial property at unobserved 
spatial locations. The transiogram represents the 
conditional probabilities of an unobserved geoma-
terial along a certain directional axis and Euclid-
ean distance (lag) from an observed geomaterial at 
any spatial point. For instance, for the transiogram 
in the z-direction at lag 50 (Fig. 8), there is a 75% 
probability that Shale will transition to Shale, a 10% 
probability that Shale will transition to Sand, 8% 
probability that Shale will transition to Clay and 7% 
probability that Shale will transition to Silt. From 
Table  1, we can also infer that the transition rates 
in the Y-direction and Z-direction are higher than in 
the X-direction which may be due to the lengths and 
the layout of the geomaterials. The negative values 
in the diagonal of the transition rate matrices in 
Table 1 are consistent with the inverse relationship 

Fig. 7  Accuracy plot showing the bias distribution and RMSE 
values for cross validation of the PU and PUGU models (Ng 
et al. 2023)

Table 1  3D estimated transition rate matrices obtained using 
the maximum entropy method (Ng et al. 2023)

Geomaterial class Clay Sand Silt Shale

X-direction estimated transition rate matrix
 Clay − 0.012 0.005 0.003 0.004
 Sand 0.003 − 0.009 0.003 0.003
 Silt 0.003 0.004 − 0.010 0.003
 Shale 0.002 0.003 0.002 − 0.007

Y-direction estimated transition rate matrix
 Clay − 0.055 0.020 0.013 0.022
 Sand 0.016 − 0.055 0.015 0.024
 Silt 0.014 0.020 − 0.055 0.021
 Shale 0.017 0.023 0.015 − 0.055

Z-direction estimated transition rate matrix
 Clay − 0.039 0.013 0.013 0.013
 Sand 0.012 − 0.054 0.021 0.021
 Silt 0.026 0.044 − 0.114 0.044
 Shale 0.011 0.019 0.019 − 0.049
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of the graph in the diagonal of the transiogram in 
Fig. 8

The simulated subsurface averaged over multi-
ple simulations for the geomaterial type is shown 
in Fig.  9. A total of 100 simulations are deemed 
adequate as additional simulations resulted in less 
than ± 1% change in the information entropy (Pyrcz 
and Deutsch 2014). Oluwatuyi et  al. (2022b) and 
Oluwatuyi et al. (2023b) have also shown this num-
ber of simulations to be adequate, as additional 
simulations do not appear to justify the additional 
computation time. This simulated geomaterial type 
in the random field contains the geological uncer-
tainties to be considered along with property uncer-
tainties. The incorporation of geological uncertainty 
will enhance the separation of the four geomaterial 
types on the simulated subsurface in Fig. 9 into lay-
ers through highly nonlinear spatial boundaries, 
unlike previous methods of treating the subsur-
face as a single layer or multiple layers determined 
through the linear interpolation of the historical 
geological data. These spatially determined lay-
ers are thereafter analyzed collectively with differ-
ent averages of the geomaterial property by layer 
to accurately predict the subsurface geomaterial 
property.

5.2  Geomaterial Property Prediction

The SPT N-values measured from the boreholes are 
log transformed and the average for each of the four 
spatially determined layers is estimated. Allowing for 
different means across the layers accounts for geoma-
terial heterogeneity and possible violation of weak 
stationarity. This approach also allows for homogene-
ous spatial correlation to be modeled across the study 
site which is especially critical for modeling sparse 
borehole data. The exponential correlation structure 
is used because it incorporates spatial correlation 
that is similarly used by Oluwatuyi et  al. (2022a). 
Assumptions of anisotropy and isotropy are checked 
by fitting these models for log SPT N-values with 
the Exponential spatial structure in the X–Z and Y–Z 
directions and by comparing the information criteria 
presented in Table  2. The isotropic model is prefer-
able for both combinations based upon smaller AIC 
and BIC. This implies that the covariance structure 
does not change with direction (Bivand et al. 2008). 
A variogram of log SPT N-values using the fit of an 
exponential model and no nugget is shown in Fig. 10. 
Prediction of log SPT N-values for the subsurface is 
done using universal kriging such that the different 
layers are analyzed with the respective average of log 

Fig. 8  Z-direction transiogram estimated from the data (Ng 
et al. 2023)

Fig. 9  Simulated subsurface showing predicted geomaterial 
type (Ng et al. 2023)
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SPT N-values. Log SPT N-values are conditionally 
simulated for each of the 100 four-layered subsur-
faces. The log SPT N-values simulated subsurface is 
back-transformed to obtain SPT N-values in blows/m 
on the original scale. The simulated subsurfaces are 
averaged for the log and back-transformed predicted 
SPT N-values as shown in Fig. 11. The determination 
of the recommended borehole locations and the bore-
hole numbers for the OSIP is based on the 100 con-
ditionally simulated subsurfaces containing the log 
predicted SPT N-values.

5.3  Optimal Site Investigation plan (OSIP)

Site investigation plans with relative borehole drill-
ing locations obtained from IADOT and conditional 
simulations are compared in Fig.  12. The borehole 
locations from the IADOT sampling plan are selected 
based on current site investigation practice. The bore-
holes from the conditional simulations are drilled at 
locations where both geological and property uncer-
tainties are minimized for the shale or IGM layer 
over the 100 conditional simulations of predicted log 
SPT N-values. Uncertainty minimization is specified 

for the shale layer because most of the piles used 
in the bridge construction at the case study site are 
end-bearing piles. The measure of uncertainty in 
this study by SD on the logarithmic scale is approxi-
mately equal to the coefficient of variation (COV) 
on the arithmetic scale (Julious and Debarnot 2000). 

Table 2  Information 
criteria (smaller-is-better) of 
the GLM with Exponential 
spatial correlation for the 
X–Z and Y–Z coordinate 
systems (Ng et al. 2023)

GLM X–Z Y–Z

n2llik AIC AICc BIC n2llik AIC AICc BIC

Isotropic 97.08 109.08 111.24 119.51 95.43 107.43 109.58 117.85
Anisotropic 96.97 112.97 116.87 126.87 92.92 108.92 112.81 122.82

Fig. 10  Isotropic variogram of the exponential spatial correla-
tion for SPT N-values (Ng et al. 2023)

Fig. 11  Simulated subsurface showing a log and b back-trans-
formed predicted SPT N-values (Ng et al. 2023)
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Boreholes 1 to 4 which are in the proximity of the 
four foundation locations in Fig. 12 provide the actual 
or preliminary borehole information from the case 
study. The relative locations for the subsequent bore-
holes 5 to 8 differ for the two sampling plans (IADOT 
and conditional simulation). The conditional simu-
lation proposed sampling plan, just like the IADOT 
sampling plan, has geomaterial profile information 
maximized with boreholes spread across the site. 
Uncertainties are quantified in Fig.  13 for the four 
geomaterial layers of the different borehole locations 
and two sampling plans on the multiple simulated 
random fields. The idea is to quantify the uncertain-
ties due to the actual boreholes numbered 1 to 4 and 
determine how the relative locations of subsequent 
boreholes numbered 5 to 8 will reduce these uncer-
tainties. The optimal number is selected as the num-
ber of boreholes with the minimum SD in the shale as 
the pile end-bearing layer in which further reduction 

in SD is no longer worth the additional effort. For the 
conditional sampling plan, the optimum number of 
boreholes is 6 as shown in Fig. 12b. The conditional 
simulation proposed plan has the lowest SD of 0.155 
at 6 boreholes compared to the lowest SD of 0.187 
obtained from the IADOT sampling plan at 4 bore-
holes. It is reasonable to compare four boreholes to 
six boreholes as will be done in Sect.  5.4, because 
we are comparing the best performance of these site 
investigation plans which are at their lowest uncer-
tainties. In most bridge designs, the conditional simu-
lation proposed sampling plan is ideal for subsurface 
characterization because it is site-specific. Also, the 
preliminary borehole information from the founda-
tion locations will be sufficient for spatial analysis of 
geological and property uncertainties to recommend 
subsequent locations of boreholes for the detailed site 
investigation.

Fig. 12  Relative borehole drilling locations for a IADOT sam-
pling plan and b conditional simulation proposed sampling 
plan (Ng et al. 2023)

Fig. 13  Uncertainties in the four geomaterial layers as 
obtained from a IADOT sampling plan and b conditional sim-
ulation proposed sampling plan (Ng et al. 2023)
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5.4  OSIP Validation

It is necessary to validate the proposed OSIP bore-
holes to see if it is an adequate representation of 
the study site. The previous validation conducted 
in Sect. 3 is done to determine the prediction accu-
racy of the model and to demonstrate the need to 
consider geological uncertainty. Validation in this 
section is done to determine the prediction accu-
racy of the conditional simulation and to show 
the need for the recommended boreholes from the 
OSIP. Boreholes 1 to 6 from the conditional simula-
tion sampling plan in Fig.  12b are denoted as the 
OSIP boreholes (OSIP BHs). These OSIP BHs are 
a combination of four actual preliminary boreholes 
(which are also boreholes 1 to 4 in the IADOT sam-
pling plan denoted as Actual BHs), and two rec-
ommended boreholes (boreholes 5 and 6) selected 
to reduce uncertainty. The six boreholes (OSIP 
BHs) are used as model training data to simulate 
the geomaterial types and property (predicted log 
SPT N-values) for the whole subsurface. The four 
boreholes (boreholes 5 to 8) earlier expunged in 
Sect.  3 from the IADOT sampling plan as shown 
in Figs.  4 and 12a are used as model testing data 

to validate the predicted geomaterial types and log 
SPT N-values earlier obtained. Once the whole sub-
surface is simulated using data from the four actual 
and six OSIP boreholes. The predicted geomaterial 
types in all four layers of the simulated subsurface 
at the exact locations of boreholes 5 to 8 are com-
pared to the geomaterial types observed in all four 
layers of boreholes 5 to 8 to determine their per-
centage match (prediction accuracy) as shown in 
Fig.  14. The percentage match results as summa-
rized in Table  3 show that the six OSIP boreholes 
have an average 67.4% geomaterial type prediction 
accuracy compared to the average 62.7% geomate-
rial type prediction accuracy estimated when four 
actual boreholes are used as model training data. 
The rationale for comparing four actual boreholes to 

Fig. 14  Comparison 
between the observed bore-
hole geomaterial types and 
the predicted geomaterial 
types from the actual and 
OSIP boreholes (Ng et al. 
2023)

Table 3  Geomaterial type prediction accuracy (Ng et al. 2023)

Site investigation plan Percentage match for boreholes 5 to 8 
in the IADOT sampling plan

BH5 BH6 BH7 BH8 Mean

4 Actual Boreholes 62.9 54.8 68.1 64.9 62.7
6 OSIP Boreholes 68.0 57.8 70.0 73.8 67.4
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the six OSIP boreholes had been described earlier 
in Sect. 5.3 of the paper.

Predicted log SPT N-values at the exact locations 
of boreholes 5 to 8 on the simulated subsurface are 
also compared to the measured log SPT N-values to 
assess prediction accuracy. The results of validat-
ing the geomaterial property using the data from the 
actual preliminary boreholes and the OSIP boreholes 
are shown in Fig. 15. The results also show that the 
OSIP boreholes have a better prediction accuracy 
than the actual preliminary boreholes. The prediction 
error measured in terms of RMSE (Eq. 11) decreased 
from 27 to 10% with the proposed OSIP. Figure  15 
shows that the validation of the OSIP boreholes is 
much closer to the equality line compared to that of 
the actual boreholes with a mean bias of 1.01 closer 
to unity and a smaller SD of 0.04. This validates the 
need for the recommended boreholes through the 
proposed OSIP resulting in a more accurate and con-
sistent prediction of the geomaterial property of the 
subsurface. In particular, the improved prediction and 
reduction in uncertainties of a critical geomaterial 
layer, such as the shale in this case study, invariably 
improve the design efficiency and performance of an 
end-bearing pile foundation.

6  Summary and Conclusions

This study proposed a method for determining the 
OSIP considering both geological uncertainty and 
property uncertainty for bridge foundation design. 
Geological uncertainty is addressed to better analyze 

a multilayered site. Analysis of the sparse borehole 
data from a preliminary site investigation is con-
ducted in 3D to accurately represent the project sub-
surface. In the absence of pre-existing borehole data 
on the site, boreholes are recommended at the pro-
posed pile foundation footprint. The methodology 
involves predicting the geomaterial type and the geo-
material property at unobserved spatial positions of 
the random field using multinomial categorical pre-
diction and universal kriging, respectively. Geologi-
cal and property uncertainties are obtained for these 
predictions through multiple simulations. The method 
is compared to that in which only property uncer-
tainty is considered and is also validated by assessing 
prediction accuracy and consistency. The following 
important conclusions are drawn from this study:

• Cross validation of models shows that the aver-
age 34% prediction error of the model considering 
property uncertainty alone is higher than the aver-
age 18% estimated for the model considering both 
geological and property uncertainties. Hence, the 
consideration of both geological uncertainty and 
property uncertainty is important to improve the 
model prediction accuracy.

• Compared to the IADOT plan with four boreholes 
and the lowest SD of 0.187, the OSIP determined 
from the conditional simulation for the IGM layer 
(layer 4) results in the lowest SD of 0.155 at six 
boreholes. The lower uncertainty resulting from 
the OSIP improves the design efficiency of bridge 
foundations.

• The validation for six OSIP boreholes consisted 
of four actual boreholes (same as boreholes 1 to 4 
of the IADOT plan) and two recommended bore-
holes, showing a decrease in the prediction error 
from 27 to 10%. This finding supports the appli-
cation of the proposed OSIP considering the addi-
tion of new recommended boreholes.

• It is important to consider minimizing both geo-
logical and property uncertainties in the develop-
ment of OSIP. Considering both uncertainties in 
OSIP provides a better prediction and reduces the 
uncertainty of the geomaterial response for bridge 
pile foundations.

This paper provides the methodology and justi-
fication for developing the OSIP. While the study 
was based on intermediate geomaterials from the 

Fig. 15  Comparison of measured and predicted log SPT for 
the OSIP boreholes and the actual boreholes (Ng et al. 2023)
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sedimentary terrain, the geostatistical methods used 
in this study are also applicable to igneous and met-
amorphic terrains. Future studies will look at the 
incorporation of OSIP into the subsequent estimation 
of pile resistances for improving the reliability analy-
sis and design of bridge pile foundations.
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