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Abstract
Leishmaniasis is a vector-borne disease of which the transmission is highly influenced by climatic factors, whereas the nature 
and magnitude differ between geographical regions. The effects of climatic variables on leishmaniasis in Sri Lanka are poorly 
investigated. The present study focused on time-series analysis of leishmaniasis cases reported from Sri Lanka with selected 
climatic variables. Variance stabilized time series of leishmaniasis patients of entire Sri Lanka and major districts from 2014 
to 2018 was fitted to autoregressive integrated moving average (ARIMA) models. All the possible models were generated 
by assigning different values for autoregression and moving average terms using a function written in R statistical program. 
The top ten models with the lowest Akaike information criterion (AIC) values were selected by writing another function. 
These models were further evaluated using RMSE and MAPE error parameters to select the optimal model for each area. 
Cross-autocorrelation analyses were performed to assess the associations between climate and the leishmaniasis incidence. 
Most associated lags of each variable were integrated into the optimal models to determine the true effects imposed. The 
optimal models varied depending on the area. SARIMA (0,1,1) (1,0,0)12 was optimal for the country level. All the forecasts 
were within the 95% confidence intervals. Humidity was the most notable factor associated with leishmaniasis, which could 
be attributed to the positive impacts on sand fly activity. Rainfall showed a negative impact probably as a result of flooding 
of sand fly larval habitats. The ARIMA-based models performed well for the prediction of leishmaniasis in the short term.
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Introduction

Leishmaniasis is an infectious disease caused by Proto-
zoan parasites in the genus Leishmania, which transmits 
by the bite of the infected female sand flies. This disease 
is more prevalent in developing countries in the tropical 
region including India, Bangladesh, Iran, Brazil, Afghani-
stan, Algeria and Ethiopia (WHO 2022). Leishmaniasis has 
three main clinical manifestations, namely, cutaneous leish-
maniasis (CL), mucocutaneous leishmaniasis (MCL), and 
visceral leishmaniasis (VL). Among these, CL is considered 
the least complex, but the most common type (CDC 2022). 
In Sri Lanka, all three clinical forms of the disease have been 

reported, whereas the CL is the predominant manifestation 
(Wijerathna et al. 2017).

Outbreaks in infectious diseases have interactions with 
spatial and temporal dimensions (Sattenspiel 2009). It is 
known that spatial heterogeneity is subject to differences 
in the distribution of vectors and other risk factors. Further, 
it influences shifting the patterns of vector parasite interac-
tions, vector-host contact, and susceptibility of the popula-
tion (Werneck 2008). In Sri Lanka, climatic conditions have 
been proven to affect the occurrence of vector-borne diseases 
such as Malaria and Dengue (Briët et al. 2008; Ehelepola 
et al. 2015).

Some studies have evaluated the spatial and temporal 
distribution of leishmaniasis cases with associated risk fac-
tors (Assunção et al. 2001; Shimabukuro et al. 2010; Gálvez 
et al. 2011; de Souza et al. 2012; Karagiannis-Voules et al. 
2013; Gomez-Barroso et al. 2015). Research from other 
countries shows both positive and negative correlations 
between climate factors and disease incidence (Toumi et al. 
2012; Rosales et al. 2017; Sharafi et al. 2017). All these 
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studies suggest that the incidence of leishmaniasis is influ-
enced by climatic variables, but the nature and magnitude 
of these effects may differ from one geographical region 
to another. Therefore, prediction approaches developed for 
different geographical regions or countries are needed to 
achieve a better outcome in disease forecasting.

Despite new developments in disease control and 
advanced treatment methods, leishmaniasis is still one of the 
most prevalent tropical diseases in the world (WHO 2022). 
Leishmaniasis disease control programs mainly depend on 
the availability of knowledge on various aspects of the dis-
ease such as vector ecology, human-vector-parasite interac-
tions, epidemiology, risk factors, disease trends, and pos-
sible climate dependencies (Wijerathna et al. 2017). Hence, 
the predictions through time series analyses are important 
to identify trends and possible disease outbreaks, which may 
ultimately facilitate control programs through proper precau-
tionary interventions (Huang et al. 2011).

The autoregressive integrated moving average (ARIMA) 
is a linear model used in time series forecasting (Brockwell 
et al. 2002). The ARIMA models are usually denoted as 
ARIMA(p,d,q), where p, d, and q are integers. The param-
eter p is the order (number of time lags) of the autoregres-
sive model, d is the degree of differencing or the number of 
times the past values of each reading of the data set should 
be subtracted to achieve the stationarity, and q is the order 
of the moving-average model (Brockwell et al. 2002). If the 
data set indicates a seasonal pattern, a seasonal component 
must be included in the model. This includes the order of 
the seasonal autoregressive model (P), the degree of sea-
sonal differencing (D), and the order of the seasonal moving 
average model (Q). The values of p, d, q, P, D, and Q are 
determined based on the autocorrelation and partial autocor-
relation plots and subsequent validation methods.

The ARIMA-based models have been used to predict the 
prevalence of various infectious diseases with high accuracy 
in the recent past (Ture and Kurt 2006; Huang et al. 2011; 
Liu et al. 2011; Sharafi et al. 2017). Climatic factors are also 
known to influence the predictive power of such models sig-
nificantly (Huang et al. 2011; Roger et al. 2013; Anwar et al. 
2016). The development of accurate prediction systems and 
identification of climatic factors associated with a disease 
incidence are critical for a developing country like Sri Lanka 
to plan and implement control activities in a cost-effective 
manner. Recent studies using spatio-temporal modelling 
(Karunaweera et al. 2021) and univariate time series analy-
ses (Galgamuwa et al. 2018) with relatively low data points 
have added significantly to the knowledge of leishmaniasis 
progression so far and how much it will be in the future. 
However, further studies using different approaches such 
as multivariate time series analysis with a relatively long 
period of data may uncover different future scenarios. Fur-
thermore, ARIMA modelling with external regressors will 

reveal any lagged climatic dependencies of leishmaniasis in 
Sri Lanka. The present study was conducted to develop an 
ARIMA-based multivariate time series model for the short-
term forecasting of the leishmaniasis disease incidence and 
to evaluate climatic factors associated with leishmaniasis 
incidence in Sri Lanka.

Materials and methods

Study area

Sri Lanka (6° 56′ N 79° 52′ E) is one of the endemic coun-
tries for cutaneous leishmaniasis in the world. It covers 
65,610  km2 land area. Approximately, 21 million inhabitants 
live in the country (Department of Census Statistics 2019). 
The country has tropical warm climatic conditions with a 
mean temperature ranging from 17 to 33 °C (Department of 
Meteorology 2019). The country receives the highest rain-
fall during the monsoon periods. Wet zone areas (Southern, 
South Western and Central parts of the country) receive 
rainfalls as high as 2,500 mm, whereas dry zone (Northern, 
Eastern and South Eastern parts) receive rainfalls from 1200 
to 1,900 mm (Department of Meteorology 2019).

Patient information

Recorded cases of leishmaniasis patients from each district 
were retrieved by assessing the open-source records availa-
ble at the Epidemiology Unit, Ministry of Health, Sri Lanka.

Meteorological data

Monthly mean values of the six climatic parameters (rain-
fall, average temperature, minimum temperature, maximum 
temperature, and relative humidity) from January 2014 to 
December 2019 were recorded at agrometeorological sta-
tions in Sri Lanka which were obtained from the data reposi-
tory at the Department of Meteorology, 383, Bauddhaloka 
Road, Colombo 07, Sri Lanka. Monthly climatic data sur-
faces were created using kriging-based spatial prediction 
and the average values for selected climatic factors were 
extracted for each month.

Diagnosis criteria

The diagnosis of the disease is done only for patients seek-
ing medical attention for their symptoms. No program is 
conducted for active case detection at the early stages of 
infection (Wijerathna et al. 2018). The diagnosis is mainly 
achieved through microscopic observations of GIEMSA-
stained smears, while advanced techniques such as polymer-
ase chain reaction (PCR), enzyme-linked immunosorbent 
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assay (ELISA), and other molecular diagnostic facilities are 
limited (Karunaweera et al. 2007; Siriwardana et al. 2010; 
Wijerathna et al. 2018).

Statistical analysis

The variances introduced by trends of the number of 
patients’ time series were first stabilized using log trans-
formation. The autocorrelation function (ACF) and partial 
autocorrelation function (PACF), which are measures of 
correlation between an observation and its past values of 
a time series, were plotted to determine whether there is 
a seasonality in the data set, indicated by similar values at 
regular intervals (For instance, higher number of patients 
after every 12 months, which is indicated by the tall bars of 
correlation plots). Seasonality was also modelled, where the 
seasonality is present in the time series.

In order to determine the p, d, and q values, initially, the 
stationarity of the time series was evaluated using the Aug-
mented Dickey-Fuller (ADF) test (Said and Dickey 1984) to 
check whether the time series changes with time. If results 
indicated a non-stationarity pattern, the first difference of 
the time series was tested. This was repeated until the time 
series is stationary. The number of differences required to 
make the data set stationary was taken as the value for d 
(the integration component of the model), and seasonal 
difference values were used to determine D (the seasonal 
counterpart of d). The PACF and ACF plots were used to 
get multiple possible estimations for p, P, q, and Q values 
based on the number of lines that exceed the correlation line 
in ACF and PACF plots.

The effects of climatic variables on the number of patients 
were first analyzed using Spearman’s correlation. Further-
more, the cross-autocorrelation analyses were performed 
for each climatic variable to check how long it takes for a 
change in climate conditions to exert a change in the number 
of patients (the lag with the highest correlation coefficient 
value). The lagged time series of each selected environment 
parameter was generated. After stabilizing the variance 
(deviation from the mean value, which differs with time if 
not stabilized) by log transformation, the remaining irregular 
part was used as an external regressor in the ARIMA model. 
Akaike information criterion (AIC) was used to compare 
the goodness-of-fit after integrating climatic variables, if 
the AIC value is lower than the original model (before add-
ing external regressors) once a particular climatic factor is 
integrated, that factor significantly affects the number of 
patients.

Evaluation of the prediction model

All the possible ARIMA models were created as a list by 
assigning all the possible estimated values for p, d, P, and Q 

using a code written in R programming language. Using the 
same method, AIC values were calculated for all the models 
and the models were arranged in the ascending order based 
on the AIC values. The top ten models with the lowest AIC 
values were selected for final evaluations using error values. 
The models were developed based on the information from 
January 2014 to December 2018 (training data set). The 
developed prediction models were assessed for validity and 
accuracy by predicting the disease incidence from January 
to December 2019 (testing data set). The error measures 
such as root mean square error (RMSE) and mean absolute 
percentage error (MAPE) were considered in assessing the 
accuracy. The residuals (the difference between observed 
and predicted values) of the selected models were assessed 
by the Ljung–Box test to check the statistical significance 
of the selected model (Box and Pierce 1970). Basic R, 
tidyverse (which include tidyr, dplyr and ggplot2), tseries, 
and forecast packages of R (R Core Team, Vienna) were 
used in data clearing, statistical analysis, data visualization, 
and time series modelling.

Results

Univariate ARIMA modelling

The Augmented Dickey Fuller (ADF) test indicated the time 
series of leishmaniasis incidence in Sri Lanka does not show 
stationarity (P > 0.05). This was the same for district level 
data as well. All the district data sets and all-island data 
showed stationarity after the first differencing. Thus, the 
value for non-seasonal integration term (d) was 1 for each 
of the optimal models (Table 1). The type of the model var-
ied depending on the area (Table 1). The collective data set 
for the entire country showed a seasonality of 12 months. A 
total of 140 models were generated for leishmaniasis inci-
dence in Sri Lanka. Among them ARIMA (0,1,1) (1,0,0)12 
was selected as the best model based on the goodness of fit 
and error estimates (Table 1). The analysis of residuals indi-
cated that this model is statistically suitable to predict leish-
maniasis incidence (P Box-Ljung > 0.05). Only five districts 
with the highest cutaneous leishmaniasis incidence were 
selected to develop separate models. There was a seasonal-
ity in the disease incidence in the Matara district. Thus, the 
seasonality was also modelled. Other districts did not show 
a seasonality. Optimal models for Hambanthota, Anurad-
hapura, Kurunegala, Polonnaruwa, and Matara were (2,1,3), 
(0,1,2), (3,1,1) and (3,1,0), (1,1,2) (0,1,1)12, respectively. All 
the models for district levels were statistically suitable for 
disease incidence prediction at 95% confidence intervals (P 
Box-Ljung > 0.05). The AIC values and the key error parameters 
for each model are mentioned in Table 1.
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Disease forecasts

All the tested models were suitable for forecasting within 
95% confidence intervals as indicated by forecast plots 
(Fig. 1). The annual forecasts for the whole country are an 
underestimation, while the same was observed for Ham-
banthota, Anuradhapura and Polonnaruwa (Table 2). The 
predicted numbers were overestimations for Kurunegala 
and Matara. However, all the predictions are well within 
the 95% confidence level. The forecasts for the coming years 
after the study period indicate that the number of patients 
at the end of 2020, 2021, and 2022 is 4335, 4387, and 4395 
respectively. The trends indicate that the number of patients 
per year will approximately be at the same level for Ham-
banthota, Anuradhapura, Polonnaruwa, and Kurunegala, 
where Kurunegala will have the highest number of patients. 
A slight increase can be expected for the country level. Nev-
ertheless, the Matara district shows a significant increase in 
the number of patients in the coming years.

Cross‑autocorrelation analysis

The partial autocorrelation analyses were performed using 
Spearman’s rank correlation test and none of the climatic 
parameters showed direct correlations to the leishmaniasis 
incidence neither for Sri Lanka nor any of the districts at 
95% confidence intervals (P > 0.05). However, the cross 
autocorrelation revealed that relative humidity is positively 
associated with the leishmaniasis incidence in the entire 
country with a lag of 3 months (P < 0.05, r = 0.230). In 
Hambanthota, both the maximum temperature (r = 0.555, 
P < 0.05) and relative humidity (r = 0. 0.255, P < 0.05) were 
positively associated with the number of leishmaniasis 
patients. This was also with a 3-month lag period for both 
the variables. Relative humidity, which exclusively had only 
positive impacts, was also a determining factor in Matara 

(r = 0.489, P < 0.05) and Anuradhapura (r = 0.267, P < 0.05) 
with 1- and 3-month lags, respectively. In Matara, relative 
humidity was the only climate variable with a correlation, 
while in Anuradhapura, average temperature (r =  − 0.267, 
P < 0.05), minimum temperature (r =  − 0.281, P < 0.05), and 
maximum temperature (r =  − 0.319, P < 0.05) were nega-
tively associated with the leishmaniasis incidence with lag 
periods of 9,9 and 4 months, respectively. Rainfall showed 
an impact on the disease incidence only for Polonnaruwa 
(r =  − 0.239, P < 0.05). This was a negative correlation with 
a 6-month lag. No significant correlations were observed 
for any of the climate variables for the Kurunegala district.

Multivariate ARIMA (ARIMAX) models

The appropriately lagged time series of the climate variables 
that showed the highest cross-autocorrelation values to the 
leishmaniasis incidence (Table 3) was integrated as an exter-
nal regressor. The predictive power of the model created for 
the entire country was increased after integrating the rela-
tive humidity as indicated by the AIC value. The same was 
observed for relative humidity in Hambanthota and Anurad-
hapura. Furthermore, the maximum temperature resulted in 
increased predictive power in Hambanthota. Rainfall which 
showed a negative impact on the leishmaniasis incidence in 
the Polonnaruwa district also increases the forecasting power 
of the optimal model. Nevertheless, other associated climatic 
factors did not increase the predictive efficacy of the models.

Discussion

The occurrence of vector-borne disease in tropical regions 
may be partially attributed to various environmental and 
biological factors, which are favorable for pathogens and 
vectors to thrive and spread diseases (Hotez et al. 2007; 

Table 1  Best predictive ARIMA models for Sri Lanka and main endemic districts

a Model with the lowest AIC values is better
b Models with error values are low and the difference between training and testing error values are better
c If the P value is higher than 0.05, the model is statistically significant

Sri Lanka Hambanthota Anuradhapura Kurunegala Polonnaruwa Matara

Model (0,1,1) (1,0,0)12 (2,1,3) (0,1,2) (3,1,1) (3,1,0) (1,1,2) (0,1,1)12

AIC a 32.02 124.73 70.39 81.85 434.48 91.93
RMSEb training 0.2966 0.5989 0.4115 0.4497 8.5550 0.4270
RMSEb

testing
0.1417 0.4732 0.2377 0.1312 9.8192 0.3172

MAPEb training 4.7012684 14.8965971 9.6893507 13.9757074 68,236 11.6400673
MAPEb

testing
1.9322937 9.0641847 5.3365764 2.2430627 34.257001 7.1763089

P Box-Ljung c 0.503 0.8641 0.9179 0.9992 0.9997 0.4584
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WHO 2019). Climatic conditions are one of the major con-
tributors to the prevalence of vector-borne diseases (Roger 
et al. 2013; Anwar et al. 2016). Therefore, a clear view of 
disease trends with climatic and environmental variables 
is an important aspect to facilitate control programs and 
the decision-making process. There are some attempts to 
predict disease incidence based on epidemiological and 
climatic factors. The ARIMA-based approach is one of 

the useful tools widely used in epidemiological studies 
and disease control activities. However, such tools have 
been sparsely used to forecast vector-borne diseases in 
Sri Lanka and no proper attempt has been made for leish-
maniasis. Therefore, this study highlights the first inves-
tigation in Sri Lanka using ARIMA based approach to 
correlate disease occurrence of leishmaniasis with climatic 
variables.

Fig. 1  Forecast plots generated from the optimal model for each area
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The type and the model parameters varied depending on 
the area. The selection of these models was based on the 
AIC values as well as RMSE and MAPE values, which indi-
cate the predictive efficiency of the models. The selected 
models showed an independent pattern according to the 
Box-Ljung test, which reflects that this model is suitable for 
short-term predictions of leishmaniasis incidence. Moreover, 
the forecast plot indicated that the actual values were always 
within the 95% confidence interval range forecasted by the 
model, further confirming the validity of each model.

In the use of disease forecasting for decision making, 
over-estimations are usually better than under-estimations 
as it provides an opportunity to have better preparedness. 
However, even though the resulted models give under-esti-
mations for several areas including the whole country data, 
the actual values are always within the 95% confidence inter-
vals. Therefore, in the decision-making, the consideration 
of the margin of error reflected by the confidence intervals 
as shown in forecast plots is necessary. Furthermore, the 
forecasts indicate a significant and continuous increase in 
the number of patients in Matara. This is also continuous 

with the general trends observed in other areas in the past 
few years. Especially, the Kurunegala district, which ini-
tially showed a low number of patients and recently became 
the district with the highest leishmaniasis incidence in the 
country. Our results signify that the Matara district must be 
given the priority in coming years to minimize the disease 
burden. Kurunegala district is also a noticeable district in 
terms of prioritization for control activities. Although the 
predicted number of patients does not indicate an increasing 
trend, the number of patients stays at a higher level close to 
1000 patients per year.

The associations between climatic factors and leishma-
niasis incidence are characterized by numerous studies from 
various geographical regions in the world such as North 
and East Africa, Middle-East and South Asia, and South 
America (Thomson et al. 2003; Chaves and Pascual 2006; 
Toumi et al. 2012; Amin et al. 2013; Bounoua et al. 2013; 
Roger et al. 2013; Akbari et al. 2014; Shirzadi et al. 2015; 
Azimi et al. 2017; Moradiasl et al. 2018). In this study, the 
cross-autocorrelation analyses indicated that several climatic 
factors were associated with the leishmaniasis incidence at 
different monthly lags. However, only a few of the factors 
increased the prediction power of the selected models.

Temperature is a factor often linked with the incidence 
of leishmaniasis (Chaves and Pascual 2006; Azimi et al. 
2017). Some studies suggest that there is a positive cor-
relation between temperature and leishmaniasis incidence 
(Bounoua et al. 2013; Roger et al. 2013; Shirzadi et al. 
2015; Moradiasl et al. 2018), while some studies indicate a 
negative impact (Thomson et al. 2003; Chaves and Pascual 
2006; Amin et al. 2013; Akbari et al. 2014; Azimi et al. 
2017). On the other hand, in some areas, the temperature 
has no apparent impact on leishmaniasis incidence (Toumi 
et al. 2012). In the present study, the number of patients 
in the Hambanthota district showed a moderate positive 

Table 2  Comparison of the predicted and actual number of patients 
for 2019 and the predictions for the following 3 years

Area Number of patients

2019 2020 2021 2022

Predicted Actual

Sri Lanka 4111 4319 4335 4387 4395
Hambanthota 564 810 567 565 564
Anuradhapura 477 554 504 509 518
Kurunegala 995 976 1000 999 998
Polonnaruwa 274 305 276 281 291
Matara 735 621 1090 1614 2393

Table 3  Cross-autocorrelation 
of climate variables with 
leishmaniasis cases and 
integration to the optimal model

*Number of months taken to reflect the climate condition in the number of patients (for instance, if the 
relative humidity is higher in the current month, we can expect an increase in the number of patients three 
months later
# AIC values are lower than the univariate models. Thus, the integration of these climate factors increases 
the model accuracy, thus likely to affect disease incidence

Area Climate variable Most associated 
lag (month)*

r P AIC of the mul-
tivariate model

Sri Lanka Relative humidity  − 3 0.230  < 0.05 30.80#

Hambanthota Maximum temperature  − 3 0.555  < 0.05 124.24#

Relative humidity  − 3 0.255  < 0.05 122.32#

Anuradhapura Average temperature  − 9  − 0.267  < 0.05 70.41
Relative humidity  − 3 0.267  < 0.05 70.34#

Minimum temperature  − 9  − 0.281  < 0.05 71.02
Maximum temperature  − 4  − 0.319  < 0.05 70.48

Polonnaruwa Rainfall  − 6  − 0.239  < 0.05 432.00#

Matara Relative humidity  − 1 0.489  < 0.05 101.04
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correlation with the maximum temperature with a 3-month 
lag period. This means that the maximum temperature in 
the current month may lead to an increase in the number 
of patients 3 months later. This was also evident in multi-
variate ARIMA modelling as the predictive power of the 
model was increased when the maximum temperature with 
a lag of 3 months was integrated into the optimal model 
selected for the Hambanthota district. Observed associations 
of temperature parameters and leishmaniasis incidence in 
other districts did not increase the predictive efficacy of the 
selected models. Thus, such associations are more likely to 
be coincidental correlations.

Rainfall is another climatic factor known to associate 
with leishmaniasis incidence in tropical areas (Thomson 
et al. 2003; Amin et al. 2013; Bounoua et al. 2013; Roger 
et al. 2013; Akbari et al. 2014; Shirzadi et al. 2015; Azimi 
et al. 2017; Moradiasl et al. 2018). In the countries with 
dry climates, the disease incidence was positively associated 
with the rainfall (Toumi et al. 2012; Bounoua et al. 2013; 
Azimi et al. 2017). In areas with relatively wet climates, 
the rainfall inversely correlates with leishmaniasis incidence 
(Amin et al. 2013; Roger et al. 2013). Rainfall was not a 
determining factor for the disease occurrence in most of the 
areas. However, in Polonnaruwa, which has dry climatic 
conditions, the rainfall showed a negative relationship with 
a lag of 6 months. The use of rainfall as an external regressor 
improved the predictive power of the model further validat-
ing the observed associations. These effects are more likely 
to be due to the effects of rain on vector breeding. Stud-
ies from Sri Lanka suggest that the main breeding habitats 
proffered by sand flies are moist soil in draining irrigational 
tanks and paddy fields (Wijerathna and Gunathilaka 2020). 
The rain increases the water levels of the irrigational tanks 
and the muddiness of the paddy fields and other breeding 
sites, which will reduce the preferable conditions for sand 
fly larval development. This will subsequently lead to a 
decrease in the sand fly populations, which will be reflected 
in a decrease in the number of patients after 6 months. In 
other countries, the relationship is opposite this, where the 
rainfall in dry areas positively affects the leishmaniasis 
prevalence. This may be attributed to the differences in land 
usage in Sri Lanka. In these agricultural areas of Sri Lanka, 
the main breeding grounds of sand flies were known to be 
the drying irrigational tanks (with small water puddles), rice 
paddies and cattle huts (Wijerathna and Gunathilaka 2020), 
which have microhabitats with high humidity levels even 
in the dry months due to continuous water supply through 
man-made sources. During the rainy season, these places get 
muddy or filled with water creating unfavorable conditions 
for sand flies, while in other countries the rainfall makes 
the soil moist, creating perfect microhabitats for sand flies.

Humidity, on the other hand, almost always has had 
only positive impacts on the occurrence of the disease 

according to previous studies (Thomson et al. 2003; Toumi 
et al. 2012; Amin et al. 2013; Akbari et al. 2014; Azimi 
et al. 2017). In the current study, the most notable effect of 
environmental factors is the effect of the relative humidity, 
which showed a positive correlation to the disease occur-
rence. Interestingly, almost always the effect was seen with 
a lag of three months. The positive impacts can be attrib-
uted to its impacts on sand flies. Sand flies require humid 
places to develop from larvae to adult flies through pupal 
stages. Increased relative humidity may create preferable 
conditions for sand flies. Nevertheless, one other approach 
to explaining this effect is the increased activity of sand 
flies under humid climates and subsequent increases in 
sand fly bites. Sand flies tend not to come out during dry 
and less humid conditions to seek blood meals and prefer 
to be active when the humidity levels are high (Wijer-
athna et al. 2020b). Considering the parasite’s incubation 
period and the time from the onset of symptoms to diag-
nosis and notification, the latter is more likely. However, 
further investigations may shed light on the exact reasons 
for the observed impact of humidity on the leishmaniasis 
incidence.

The main factors affecting the transmission of vector-
borne diseases are population density of vector population, 
vectorial capacity, and host immunity (Kaddu 1986; War-
burg et al. 1991; Locksley and Louis 1992; Feliciangeli and 
Rabinovich 1998). Any climatic variable with impacts on 
these factors may indirectly influence the disease incidence. 
The leishmaniasis vector sand flies are highly sensitive to 
environmental conditions. The physical and population 
changes have been observed in the same species under dif-
ferent environmental conditions (Mann and Kaufman 2010; 
Lawyer et al. 2017; Tiwary et al. 2017; Wijerathna et al. 
2019, 2020a). Therefore, fluctuation of the leishmaniasis 
cases with relation to changes in climatic factors may also 
be an indication of a change in the sand fly population size 
or/and fitness, which in turn affects their vectorial capacity.

The time between the occurrence of a certain climatic 
event and the consequent changes in the reported number of 
leishmaniasis patients depends on the incubation period of 
the parasite and the delay between the onset of disease and 
seeking treatments. The cross-correlation analysis captures 
any delayed effect of the environmental conditions on the 
leishmaniasis incidence. The incubation period of CL usu-
ally ranges between 6 weeks and 6 months, but maybe as 
low as 10 days (Berberian 1944; WHO 2010). It is important 
to note that the incubation period may be affected by host 
immunity (Locksley and Louis 1992). There is a chance that 
the patient's immunity against disease is also affected by cli-
matic factors (Hedlund et al. 2014). Therefore, the observed 
correlations can be partially accounted for the reduced host 
immunity that may be resulted from the changes in climatic 
conditions, especially the humidity levels.
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The ARIMA-based models are useful for the short-term 
prediction of future values of a time series (Lavenbach 
2017). However, the exact number of future values that 
could be predicted by a particular model is uncertain. The 
training of the model with more recent data improves the 
accuracy of the model (Lavenbach 2017). Thus, these mod-
els may predict future values for 1–2 seasons at highly accu-
rate levels. The selection of a suitable time series forecasting 
technique from ARIMA, SARIMA and, ETS (Error, trend, 
seasonal model) is done based on the trend, seasonal, cycli-
cal, and irregular components of the series (Brockwell et al. 
2002). Traditional time series techniques such as ARIMA, 
SARIMA, and ETS are designed to handle single seasonal-
ity in a time series, though they are easy to perform (Naim 
et al. 2018). In the presence of a data set with multiplicative 
seasonality, advanced techniques like BATS (exponential 
smoothing state-space model with Box-Cox transformation, 
ARMA errors, trend and seasonal components) and TBATS 
(trigonometric exponential smoothing state-space model 
with Box-Cox transformation, ARMA errors, trend and sea-
sonal components) are more suitable (de Livera et al. 2011). 
The data sets with seasonality in the current study showed 
an additive seasonal pattern indicating that the SARIMA is 
the suitable forecasting model for the present data.

This study was conducted based on a few assumptions. 
The first one is that the notification of patient information did 
not change throughout the time and all patients are reported 
to the RDHS office. However, this is not always true. There 
were some misidentifications of leishmaniasis cases as lep-
rosy during the documentation. Furthermore, some cases 
had remained unreported for an unknown reason. Another 
issue associated with this assumption is that all patients 
seek treatment from government hospitals. However, some 
patients had visited traditional healers, while some had com-
pletely ignored them without seeking treatment and follow-
up. These patients had not reported to the general notifica-
tion system. Therefore, the number of patients is likely to 
be an underestimation of the actual case number. Hence, the 
diagnosis facilities must be further improved and the aware-
ness levels among the communities living in endemic areas 
must be enhanced. Community-based studies are required to 
identify what proportion of cases are left unnotified or mis 
notified. Those values must be integrated with forecast val-
ues to get a more accurate final estimation. Nevertheless, the 
currently developed model provides an overestimation when 
considering the upper limit of the 95% confidence intervals, 
which may somewhat compensate for the errors created by 
the underestimation of the actual case number.

In addition, the use of patients that were seeking the med-
ical attention as the incidence of CL could be a limitation in 
this study, because changes in the frequency of case detec-
tion may be influenced by many factors such as access to 
health services, the severity of the disease, and variations in 

the incubation period, which may impair the ability to assess 
the association with climate variables. However, this limita-
tion cannot be compensated since the case detection of leish-
maniasis in Sri Lanka is passive and only the patients seek-
ing medical attention for their symptoms are screened for the 
presence of parasites (Wijerathna et al. 2018). This is less 
likely to be an issue for the current approach as the inhabit-
ants in endemic areas are well aware of the disease during 
the last few years, which results in an immediate seeking 
of medical attention following the onset of first symptoms. 
Another limitation of this study is that the climatic variables 
were recorded from agro-meteorological stations located at 
several places in each district. The value obtained for the 
district may not completely represent the climatic factors of 
a selected sub-region of the districts. The predicted cases 
were not able to compare with the actual reported cases in 
2020 and 2021 due to incompleteness and under-report of 
disease incidence due to COVID-19 pandemic. Therefore, 
predicted cases versus actual cases were compared only for 
2019. The present model closely predicted the number of 
patients in 2019 (Predicted: 4111, Actual: 4319). A recent 
study conducted in Sri Lanka based on a mixed spatiotempo-
ral regression-auto-regression model has also predicted the 
number as 4064 cases for 2019 (Karunaweera et al. 2021). 
Hence, this may evidence the accuracy in the model since 
the present work predicted more closely to the actual cases 
in 2019.

Despite the limitations, the current study provides a 
good indication of how the future leishmaniasis incidence 
will vary in Sri Lanka and major endemic districts. All the 
ARIMA models constructed here predict the leishmaniasis 
incidence well within the 95% confidence intervals and a 
clear view of how the climatic variables affect the leishma-
niasis incidence in Sri Lanka is presented.

Conclusions

The ARIMA-based linear state-space models performed well 
for the prediction of leishmaniasis incidence in Sri Lanka, 
which showed no or additive seasonality for all the consid-
ered districts and whole country data. If a multiplicative 
seasonality is present, more advanced modelling algorithms 
must be used. The forecasts indicate an increase in the total 
number of patients in Sri Lanka in the coming years. Espe-
cially a significant increase can be expected in the Matara 
district. Kurunegala district must also be noted as the case 
number is likely to stay at a higher level. The relative humid-
ity is the best predictive variable for leishmaniasis in Sri 
Lanka. It is also important to establish proper data reporting/
recording systems catering to the essential data which sup-
port further optimization of forecasting models. Further, it 
is recommended to assess the need for the establishment of 
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a leishmaniasis control unit under the Ministry of Health to 
conduct such activities in a systematized manner.
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