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Abstract - This paper presents an approach to detect 
traffic signs using You Only Look Once version 4 (YOLOv4) 
model. The traffic sign detection and recognition system 
(TSDR) play an essential role in the intelligent transportation 
system (ITS).  TSDR can be utilized for driver assistance and, 
eventually, driverless cars to reduce accidents. When driving 
an automobile, the driver's attention is usually drawn to the 
road. On the other hand, most traffic signs are situated on the 
side of the road, which may have contributed to the collision. 
TSDR allows drivers to view traffic sign information without 
having to divert their attention. Due to the existence of a large 
background, clutter, fluctuating degrees of illumination, 
varying sizes of traffic signs, and changing weather 
conditions, TSDR is an important but difficult process in 
intelligent transport systems. Many efforts have been made to 
find answers to the major issues that they face. The objective 
of this study addresses road traffic sign detection and 
recognition using a technique that initially detects the 
bounding box of a traffic sign. Then the detected traffic sign 
will be recognized for usage in a speeded-up process. Since 
safe driving necessitates real-time traffic sign detection, the 
YOLOv4 network was employed in this research. YOLOv4 
was evaluated on our dataset, which consisted of manual 
annotations to identify 43 distinctive traffic signs classes. It 
was able to achieve an average recognition accuracy of 84.7%. 
Overall, the work adds by presenting a basic yet effective 
model for real-time detection and recognition of traffic signs. 

Keywords - Intelligent Transport systems, Traffic sign 
Detection, YOLOv4 

I. INTRODUCTION  

Traffic Sign Detection and Recognition (TSDR) is a 
critical work because detecting and accurately identifying 
traffic signs can alert drivers and pedestrians to the 
regulations they must observe, reducing the frequency of 
reckless accidents and, in some cases, deaths [1]. Due to 
factors such as different perspectives, degraded/damaged 
or discolored traffic signs, illumination on the traffic sign, 
and motion blur, traffic sign identification and recognition 
is a difficult process. The challenges of detection and 
classification of traffic signs are shown in Figure 1. 

 

 

Fig. 1. Challenges of detecting traffic signs employing different lighting 

conditions, deformed signs, andvariation of illumination 

 

Traditional approaches including Bag of features methods 
and Regional Convolutional Neural Networks were used 
for the detection of traffic signs in the past but were 
discarded due to the poor performances produced by those 
approaches compared with the newer approaches. 

In this paper, we used the You Only Look Once version 
4 (YOLOv4) technique to detect and recognize traffic 
signs. YOLOv4 is a state-of-the-art approach for detecting 
visual objects in a real-time environment. A dense block, a 
dense net, and CSPDarknet53 form the backbone of 
YOLOv4. A YOLOv4 model's neck is made up of feature 
pyramid networks and a spatial pyramid pooling layer. 
Finally, the output is generated by the Dense prediction 
layer. YOLOv4 has dense prediction at layers 139,150 and 
161. These layers contribute directly to the ultimate output 
and their combined results are obtained [2]. 

The remainder of this article is laid out as follows. In 
section II, there are summaries of various methods used in 
previous works related to detection and recognition. The 
perspective on the terminologies used in this work is 
covered in section III. The fourth section is devoted to a 
detailed explanation of the proposed strategies. The 
experimental environment and testing results on traffic sign 
detection and recognition in section V. The suggested 
solution is discussed and concluded with future extensions 
in section VI.  

II. PREVIOUS WORK 

In [3], authors have used a YOLO network to detect and 
identify Vehicles, trucks, pedestrians, traffic signs, and 
traffic lights. Traffic signs were then submitted to a CNN, 
which further categorized them into one of 75 groups. The 
entire solution was built on a pre-trained YOLO v3 model 
for class detection, whereas a CNN was trained from 
scratch and excellent results were displayed on input 
images for the classification. Detected Traffic signs were 
cropped and fed into the CNN for classification. They have 
obtained a classification accuracy of 99.2% for detected 
traffic signs in various weather conditions. The Berkley 
Deep Drive Dataset was used to train the YOLO network. 
The Belgian TS Dataset and the German Traffic Sign 
Recognition Benchmark have been compiled into a single 
large dataset with over 120000 images of traffic signs 
which were then divided into 75 categories. Images were 
augmented by performing Gaussian Blur, Median Filter, 
Max Filter, Min Filter, and some simple image rotations. 
Filtering false expected bounding boxes with coefficients 
less than 0.5 was achieved using the non-max suppression 
algorithm. In this study, they used three CNNs. YOLO v3 
for object detection and localization, another CNN for a 
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vehicle, truck, pedestrian, traffic sign, and traffic light 
classification, and a third CNN for traffic sign classification 
into 75 classes. Using three CNNs has led to the increase in 
computational cost while training the models and during 
realtime object detection. 

In [4], authors have proposed a novel YOLOv3 
architecture. On pictures, real-time detection with mean 
average precision (mAP) exceeding 88% has been 
demonstrated. The model was trained on a broad dataset of 
200 different classes. The testing set consisted of 25% of 
images from the total number of images. As part of the 
image augmentation process, randomized placement of 
narrowly cropped traffic signs was done, as well as 
distortions such as changes to the shape, scale, luminance, 
and contrast on the training photos. YOLOv3 detection was 
based on a publicly accessible implementation based on the 
Darknet network. Weights that were pre-trained on the 
ImageNet database were used as the initial weights for the 
model. The number of filters in YOLOv3 or Tiny YOLO's 
final layer was increased to enable the detection of 200 
classes. The learning rate was set at 0.001 and reduced 
every 15000 iterations, with the input picture size set to 608 
608 pixels. After 10000 repetitions in Tiny YOLO, the 
learning rate was decreased. Both models were trained over 
400 epochs on a machine with two 1080ti GPU. A 
predefined threshold of value 50 was used to calculate 
Intersection over Union. An accuracy(mAP) of 84.1% was 
achieved without using image augmentation and 88.1% 
mAP was obtained by using image augmentation on the 
YOLOv3 model, and an accuracy(mAP) of 72.1% was 
achieved without using image augmentation and 71.3% 
mAP with using image augmentation on the tiny Yolo 
model. Results have proven that when compared to Tiny 
YOLO, YOLOv3 was much more precise. Non-maxima-
suppression algorithm was used to eliminate unwanted 
detections and double bounding boxes. YOLO v3 had a 
lesser number of hidden layers compared to yolo v4. 
Therefore, yolov4 had better detection accuracy. The time 
it took to train a YOLO v3 model was about two weeks. 
Although YOLO models provided greater accuracy and 
real-time performance, the training time complexity was 
significant. 

In [5], authors have introduced a traffic sign 
recognition approach based on deep learning, with the 
primary goal of detecting and classifying circular signs. 
Initially, images were preprocessed to highlight key details 
to increase detection and classification accuracy. Image 
Enhancement, color space conversion from RGB (Red, 
Green, and Blue) to HSV (Hue, Saturation and value) 
image noise filtering using mean and median filters were 
included in Preprocessing stage. The hough transform and 
segmentation were used to detect and locate traffic sign 
regions. Morphological operation Opening was used to 
reduce the noise introduced by segmentation. Finally, deep 
learning was used to classify the detected road traffic signs. 
A basic CNN of lent-architecture was used with two 
convolutional layers with a kernel size of 5×5, step one, and 
ReLU activation function which was able to learn complex 
features, two pooling layers with 2×2 kernel size, and two 
fully connected layers which contained 512 and 128 hidden 
nodes respectively. Finally, there were 43 hidden nodes in 
the output layer. The learning rate was set to 0.0001 at the 
beginning. German Traffic sign Recognition Benchmark 
(GTSRB) was used and the accuracy of detected circular 

symbols was 98.2%. The entire dataset was split into two 
parts, a training set, and a testing set. 90% of the dataset 
was considered as the training set, while the remaining 10% 
was taken as the test set. 

In [6], authors have proposed a method that addressed 
the problems of low detection and recognition accuracy of 
distant, small traffic signs and traffic signs which were 
affected by weather and illumination changes. YOLOv2 
was used in real-time which had a fast-processing speed 
and few false detections to achieve the above goal. RGB 
images were obtained and used as input to the Yolo 
network. 22 convolutional layers and five pooling layers 
were used to build the YOLO v2 network. Each batch on 
the proposed system used a randomly selected image size 
from a selection of five. The YOLO network was used to 
estimate the bounding box and conditional class likelihood 
of each region in the input photos. Various image sizes 
were used to train a model that is resilient to scale shifts. A 
traffic sign dataset of 16 different types of traffic signs and 
7160 annotations were created with an image size of 
1093×615 pixels in JPEG format. The data volume was 
increased in this experiment by conducting high contrast, 
low contrast, noise, and flip horizontal data augmentations, 
which improved the generalization accuracy. Clear 
weather, night, and small objects were used in the test 
dataset which consisted of 123,241 and 140 images, 
respectively. During the test, 16 different kinds of traffic 
signs were discovered. An accuracy of 66.4 % and 60.0% 
was achieved as a result of data augmentation and training 
with various image sizes. 

In [7], using cascade classifiers that were trained on 

HOG features authors have introduced a methodology to 

detect traffic signs. A CNN was used which ensured all 

traffic signs were identified. The CNN model was used to 

decide whether the candidate zone contained any traffic 

signs. The final decision was taken at the final stage of the 

cascade classifier. Image preprocessing was included in the 

HOG feature extraction to convert the image into a 

grayscale image. Then the gamma correction algorithm was 

used to normalize the grayscale image. Gradient 

components and ordinate coordinates were obtained 

separately by using Sobel and other edge detection filters 

with the original image. Cell segmentation and gradient 

histogram calculation was achieved by segmenting the 

image into several cells of the same size and counting the 

cell unit from the histogram. After that, several feature 

vectors were extracted, and cell units were grouped into a 

larger interval and feature vectors were superimposed to 

obtain the HOG features of the interval. Overlapping 

intervals were gathered and merged to get the final HOG 

features. Three convolutional layers, two max-pooling 

layers, and two fully connected layers were used to make 

the CNN model which was proposed in this study. 5×5, 

3×3, and 3×3 filters kernels were used by each 

convolutional layer respectively.300 and 42 nodes were 

present in each fully connected layer.  A CNN was adopted 

to extract object features while HOG-CNN was trained to 

acquire candidate object regions. Weight sharing was not 

performed among the nine regression variables. Therefore, 

bounding boxes of multiple scales were predicted using 

HOG-CNN. The dataset was divided into a training set and 

a testing set where three-fourth of the images in the dataset 
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was used for the training purposes while the remaining was 

used for testing. An accuracy of 90.12% was achieved was 

the detection rate on video. 

III. BACKGROUND 

A. Object detection 

Object detection is the process of locating objects which 

are present in an image and marking the detected object 

coordinates by using a bounding box. Object detection is a 

technique for determining the location of objects in an 

image [8].  

B. Bounding Box prediction 

A bounding box is a method of representing a specific 

part of an image, such as an object within a region of 

interest. A bounding box is a rectangular box that surrounds 

an object. It's usually expressed as an array of coordinate 

pairs, with the first pair corresponding to the x and y-axis 

coordinates in the upper-left corner and the second pair 

corresponding to the x and y axis coordinates in the lower-

right corner [8]. 

C. Intersection over Union 
Intersection over Union is a way of measuring the 

precision of an object detector on a given dataset [9]. The 
Intersection over Union is calculated using the ground-truth 
bounding boxes and the projected bounding boxes from the 
used model [9]. 

D. Non-maximum Suppression 
To reduce redundant bounding boxes of an object, 

many object detection systems employ the non-maximum 
suppression processing approach. When non-maximum 
suppression is utilized, the number of detections in a frame 
is limited to the total number of objects [10]. 

E. You Only Look Once (YOLO) 
“You only look once” (YOLO) is an object detection 

system that uses a deep neural network as its foundation 
andis designed to detect general objects quickly and 
accurately. The YOLO detector has excellent detection 
efficiency and a short detection time. At the same time, it 
generates various anchor boxes and confidence scores for 
those boxes [5]. During training, YOLO considers the 
whole image, allowing it to consider contextual details 
about objects. YOLO breaks the input image into square 
grids and then estimates how many bounding boxes each 
grid will have. A confidence level is calculated for each 
bounding box to determine the likelihood that it contains an 
object. The object's class is then estimated using a 
conditional class likelihood for each grid containing an 
object. During testing, conditional class probabilities and 
box confidences are combined to convey the chance of a 
class existing in the box as well as the accuracy with which 
the box fits the object [5]. There are multiple versions of 
YOLO. 

• YOLOv1 [11] comprised two fully connected 

layers for likelihood prediction and 24 

convolutional layers for extracting features.  

• YOLOv2 [12] had the potential to train on large 

datasets and detect small objects with greater 

accuracy.  

• YOLOv3 [13] architecture had 106 layers 

including residual blocks, skip connections, and 

upsampling, which had a slower detection speed 

compared with the other versions. YOLOv3 

detects at three distinct scales and from three 

separate network places, as well as a larger 

number of border boxes [5]. A simpler variant, 

known as Tiny YOLO, with a total of 22 layers, 

can be used for faster detection at the expense of 

lower detection accuracy [5]. Previous studies 

used YOLOv3 models, which had a lower 

detection rate, a larger computational cost, and a 

lower real-time performance. 

• YOLOv4 [2] is an object detector that can be 
trained with a smaller mini-batch scale on a single 
GPU. This allows a single GPU to train an 
extremely fast and reliable object detector. 

IV. METHODOLOGY 

First, we manually labeled the dataset that was utilized 
to train the YOLOv4 detector for this study using the 
labeling image annotation tool and uploaded it to Google 
Drive. Next, a YOLOv4 model was trained on Google 
collaborators using the annotated dataset. The RGB images 
in our annotated dataset were not subjected to any form of 
preprocessing during model training. This model generates 
cropped photos of identified traffic signs, which are saved 
to Google Drive. The model was trained for 10000 epochs 
and achieved an average accuracy of 84.7%.  

 
Fig. 2. The architecture of the YOLOv4 network 

 

YOLOv4 considers the entire image during training, 
allowing it to consider contextual characteristics about 
objects. YOLOv4 divides the source image into rectangular 
grids and calculates the number of bounding boxes in each 
grid. For each bounding box, a confidence level is 
calculated to evaluate the possibility that it contains an 
item. For each grid containing an item, the object's class is 
then estimated using a conditional class probability. 
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Conditional class probabilities and box confidences are 
combined during testing to encode both the likelihood of a 
class being in the box and how well the box matches the 
object [5]. 

The overall framework of YOLOv4 is illustrated in 
Figure 2. The backbone architecture was used to describe 
the feature extraction architecture. YOLOv4's backbone 
was CSPDarknet53. A Dense block in the YOLOv4 
backbone features multiple convolution layers, each of 
which has batch normalization, ReLU, and convolution. 
Dense Net is made up of many dense blocks connected by 
convolution and pooling layers in the middle. The Dense 
Block's input feature maps are separated into two parts by 
Cross-Stage-Partial connections (CSP), one of which will 
travel through a block of convolutions and the other will 
not. Following that, the outcomes are combined. This 
approach is used in the CSPDarknet53 backbone design. 

 

FPN is a prominent methodology for producing object 
detection predictions at several scale levels. FPN up 
samples the preceding top-down stream and adds it with the 
adjoining layer of the bottom-up stream when producing 
predictions for a certain scale. Figure 3 shows how 
YOLOv4 uses feature pyramids to detect traffic signs at 
different scales. The output is passed through a 33% 
convolution filter to reduce upsampling artifacts and 
crevices [5]. Spatial Attention Module (SAM), Path 
Aggregation Network (PAN), and Spatial pyramid pooling 
layer (SPP) are implemented or replaced with the FPN 
approach in YOLOv4. Maximum and average pools are 
applied to input feature maps individually in SAM to 
produce two sets of feature maps. To produce spatial 
attention, the feature maps are sent into a convolution layer 
followed by a sigmoid function. This method is used to 
gather data and improve accuracy. The preceding layer's 
input is used by each subsequent layer.  

V. EEXPERIMENTAL SETUP  

 We examine the performance of our proposed 

YOLOv4 model for traffic sign detection and experimental 

findings using a set of calculated parameters and a dataset. 

The model was tested on 43 different traffic sign classes to 

gather all of the dat 

A. Dataset 

The YOLOv4 model was trained and tested using our 
dataset [14], which was manually annotated. It was 
separated into a train set of 835 images with 1393 
annotations and a test set of 133 images with 225 
annotations, with a total of 968 images and 1618 
annotations. Figure 4 illustrates several examples of our 
dataset's images. 

B. Google Colab 

Google Colaboratory is a cloud-based tool that mimics 
the functionality of Jupyter Notebooks. Colab requires no 
setup and offers unrestricted access to computing 
resources.  

C. Darknet repository 

The model is trained by using the Darknet framework 
from AlexeyAB's repository. Darknet is a C and CUDA-
based open-source neural network framework. It is easy to 

set up and supports both CPU and GPU computing. GPU 
backend was used to train the model. 

D. Parameter calculation 

Darknet repository was configured to match a batch size 
of 64 and 16 subdivisions. The learning rate was set to 
0.001. The width and height of input images were set to 
416×416. This YOLO v4 model consists of 161 layers 
which give detections at layers 139, 150, and 161. Max 
batches, Steps, and Filters used in this YOLOv4 model are 
given in equations (1), (2), and (3) respectively. 

Max batches = number of Classes × 2000     (1) 

Steps= from (80% of max batches) to (90% of max batches)    (2) 

Filters = (number of classes + 5) × 3      (3) 

E. Testing results 

Precision, mean average precision and Intersection over 

Union were computed using the equations (4), (5), and (6). 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑙𝑎𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    (4) 

 

𝑀𝑒𝑎𝑛 𝐴𝑣𝑒𝑎𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑛
∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐾)𝐾=𝑛

𝐾=1           (5) 

 

    𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
              (6) 

In this study, the overall average accuracy of detection 

and recognition of the traffic sign over the test set for 

various situations was 84.7%. Detection and recognition 

accuracy achieved for each distinctive class is illustrated in 

Figure 5. 

VI. CONCLUSION AND FUTURE EXTENSION 

Because it was trained on Google Colab, the YOLOv4 

model, which was used for traffic sign detection and 

recognition, was discovered to have a comparatively higher 

level of accuracy while saving a substantial amount of 

computing cost and time. The 161 layers in YOLOv4 

contribute directly to the improved accuracy over prior 

YOLO versions. Higher results may have been obtained if 

the model had been trained on a larger number of epochs 

and images, as this results in a greater range of image 

contexts and image quality. 18 out of 43 classes got 100% 

accuracy and only two classes such as speed limit 80 and 

road work got less than 50% accuracy. This study was able 

to attain a mean average precision of 84.7 % for 10000 

epochs when it came to concluding its conclusions. Overall, 

this study was able to confirm that YOLOv4 outperforms 

its predecessors in terms of traffic sign detection. It may be 

inferred that the detection works effectively in a range of 

situations, such as distorted input images and lighting 

fluctuations. In the future, the extended work of traffic sign 

recognition to be improved the performance by using 

skipped layer architecture and vocabulary voting technique 

[15].
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Fig. 3. How detections are found in feature pyramid network 

 

 

Fig. 4. Some ample images of our dataset 

 

Fig. 5. Detection accuracy of the YOLOv4 model according to each class 
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