
Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

37

Paper No: SC-06 Smart Computing

A modified cognitive complexity metric to improve

the readability of object-oriented software

Thilini Jayalath*

Faculty of Graduate Studies and Research,

Sri Lanka Institute of Information Technology, Sri Lanka

thilini.j@sliit.lk

Samantha Thelijjagoda

 SLIIT Business School

Sri Lanka Institute of Information Technology, Sri Lanka

samantha.t@sliit.lk

Abstract: Complexity of software can be identified as a term

which expresses the difficulty level of reading, understanding,

maintaining and modifying the software. This helps to the

quality improvement of the software and maintenance process

of the software through a long time period without any

obstacle. Therefore, software complexity metrics have been

introduced to calculate the complexity of a software using

numerical values. While there are number of metrics which

calculate the complexity of object-oriented programs, they

only consider one or two object-oriented concepts. As a result

of that, there is no single metric which has the capability of

measuring the complexity of a program based on multiple

object-oriented concepts. This research aims to build a new

metric to evaluate the complexity of an object-oriented

program in order to improve the readability. The new metric

has been built based on the influence of previous object-

oriented metrics and some disregarded factors in calculating

the complexity. In order to evaluate the new metric,

Weyuker’s properties and Briand’s properties are used. The

new metric acquires most of the object- oriented concepts in

calculating the complexity and helps to improve the

readability of the software as well. In fact, it makes it easy to

handle the maintainability, reusability, portability and

reliability of the software, when readability is high. This will

result in increasing the overall software quality.

Keywords: Basic Control Structures (BCS), Cognitive complexity,
Object-Oriented Software

I. INTRODUCTION

Many users frequently say that their applications are
difficult to comprehend, hard to be maintained and complex.
Thus, quality of the application and quality of the process of
building the application were introduced. Then, controlling the
quality of the software as well as the development process of
the software became very important processes in software
engineering. To control this product quality and development
process quality, engineers needed a way of measuring the
complexity of the software.

There are number of definitions introduced to describe the
software complexity. Some of them are as follows.

 Harmeet and Gurvinder have described the software
complexity as the primary factor of performance,
reliability and cost of the software. Software
complexity has a major effect on the required effort to
identify the requirements, design, implement, test and
maintain the system during the software life cycle [1].

 Madi, Zein and Kadry state that the software
complexity can arise anywhere inside Software
Development Life Cycle (SDLC) such as, analysis

phase, requirement gathering phase, design phase and
implementation phase. They refer the complexity of a
software as an undesired property which makes the
software tougher to comprehend, therefore harder to
be modified [2].

A single definition cannot be used to describe the term
software complexity since it is a multi-dimensional term in
software. Different researchers have used different definitions
and views about software complexity. Therefore, authors have
decided to describe the software complexity of a system as the
difficulty in understanding, changing and maintaining the
system [3].

In order to measure the complexity and express the
complexity using numeric values, software metrics have been
introduced to the software industry. The beginning of
publishing the research papers on software metrics
commenced in 1968. R.J. Rubey and R.D. Hartwick published
a paper titled “Quantitative Measurement of Program Quality”
at the ACM National Conference, Las Vegas in August 1968.
Thereupon the community of software industry always works
on proposing new software measures and modifying existing
ones to calculate the software complexity in a more accurate
way. Program complexity depends on a large number of
factors. Number of inputs and outputs are very critical in
measuring program complexity as well as BCSs and cognitive
weights. When a program has a large number of inputs and
outputs, it makes the program more complex. In fact, a
programmer or reader needs to pay more attention to remind
those attributes and their I/O processes. Human effort which is
needed to perform a task is also a very important when it comes
to measuring the complexity. That is called cognitive
complexity measures.

The challenge in programming can be defined in terms of
the way to build the logic, not how to describe the data. But
object-oriented programming paradigm is more concerned
about managing the objects rather than the logic required to
manage them. The first step in object-oriented programming
is to determine each and every object that the developer wants
to manage and identify the relationship among them. Object
can be specified as an autonomous entity which contains both
data and procedures to manage the data. A class can be called
as a prototype from which objects are built and that explains
the details of related object. A class comprises three things:
the name, attributes and operations.

To endure a software/system in a long time it should be
properly maintained. For that, the program code of the
software/system should be understandable and readable. Then
the program code can be changed according to the available
and considerable reasons. In fact, the understandability and

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

38

readability features of the software are very important for the
maintenance phase of the object oriented (object-oriented)
software life cycle.

II. LITERATURE REVIEW

IEEE defines a metric as “a quantitative measure of the

degree to which a system, component, or process possesses a
given attribute” [4].Quantitative measurements are very
important in all sciences, computer science practitioners and
theoreticians make a continuous effort to bring similar
approaches to software development [5].

Object oriented programming is wrapped with three main
factors called, objects, classes and methods (functions). In
1999 Buckley, Layzell and Douce introduced a set of metrics
that help in calculating the complexity of a given system or
program code based on the object-oriented concepts such as
the object and class. All those metrics were based on the spatial
abilities which measure the complexity by calculating the
distances between the program elements in the code. Spatial
abilities benefit in order to read, understand and remember the
program. Therefore it is easy to maintain the software.
Authors proposed new metrics set which includes [6];

● A metric to measure the complexity of a distinct
function [Function Complexity-FC]

● With the guidance of FC, measure program
complexity where a program consists of one or more
than one function. [Program Complexity-PC]

● A metric to calculate the complexity of a recursive
method [RFC]

● Three metrics to measure object-oriented concepts

 Method Location Rating [MLR]: Here consider
the count of lines in between the method
definition and class declaration.

 Class relation measure [CRM]: Here consider the
number of lines between the parent class and
child class.

 Object relation measure [ORM]: Here consider
the number of lines between the object
declaration and its class declaration.

These three metrics require a simple calculation process
and it helps to measure the understandability of the source
code. Other than that, MLR, CRM and ORM benefit in
estimating the cost and time needed. But there are some
drawbacks in these metrics, such as;

 Depending on the language

 Having minor barriers when applying some of those
metrics in few incidents like; CRM cannot apply
where class definition is unavailable inside the code
and ORM cannot apply where the definition of object
is not inside the available code

 Requiring considerable theoretical basis and
implementation technological knowledge

 Not supporting to all object-oriented programming
concepts

 Not considering the complexity arisen due to attributes
of the class

In 2004 Kumar, Singh and Aggarwal have accomplished
to propose two metrics [7], which consider the object-oriented
concepts, such as polymorphism and encapsulation that help
to measure spatial abilities. They attempted to measure the
spatial complexity based on two categories as shown in Fig. 1.

Fig. 1. Categories of spatial complexity metrics

These measures benefit in increasing program readability,

measuring maintainability, evaluating the suitability of the
class data members, improving and comparing the class
cohesiveness and understandability. Based on previously
mentioned metrics, these two also depend on the language and
considerable theoretical basis and implementation technology
knowledge. Since calculating CSC and OSC has a lengthy
calculation process it is hard to calculate. Object oriented
system can be a collection of objects, classes and methods.

In order to find the complexity of an object-oriented
system, it is very essential to measure the complexity of entire
system rather than measuring complexity of a particular object
or class. Therefore, in 2007 Sanjay Misra [8] proposed a
contemporary measure to calculate object-oriented system
complexity. The following three steps can be used to calculate
complexity using new metric proposed.

 Measure the complexity that arise due to operations
upon each and every object

 Enumerate the complexity of individual object or class

 Lastly, calculate full code complexity (in entire object-
oriented system)

In order to calculate the class complexity (CC), first
calculate the complexity of individual classes based on
cognitive weights of BCSs. Then calculate the total Class
Complexity (CC) by adding the class complexities of all
classes that exist inside the entire code (system) compared to
CSC and OSC measures, calculating CC is little easy. In fact,
it does not require much theoretical basis and implementation
technological knowledge and accomplish the requirements
that are needed for an acceptable and good metric. CC is
language independent and a robust measure. It can be used to
evaluate understandability and efficiency of the code. But
when it comes to very lengthy source codes it can be somewhat
hard to calculate. Most of the metrics proposed earlier have the
following drawbacks.

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

39

 Absence in consideration of some object-oriented
programming concepts and principles of
measurements when designing the metrics

 Depending on technologies of implementation

 Not accommodating any convenient approach to
measure the entire class/code complexity

By considering all those shortages Misra and Akman have
introduced a new metric to measure the entire class/code
complexity followed by an object-oriented approach in 2008
[9]. This measure is based on cognitive weights and the most
important fact is this metric has considered both the
complexity arisen as a result of the data members (attributes)
and complexity arisen considering the function operations in
the class/entire code. Calculating the total WCC does not
depend on the language and it conjectures the effort of
maintenance. WCC calculates the complexity of methods with
regard to the messages and operations in those. It also
acknowledges the method internal architecture which is called
method complexity. While these being the advantages of
WCC, disadvantages, on the other hand, are somewhat hard to
calculate when it comes to lengthy codes and not supporting
all object-oriented programming concepts. Since this method
provides complexity values in a numerical format, it can be a
large number for lengthy codes. High values of complexities
are undesirable.

In 1999 Douce, Layzell and Buckley found set of spatial
metrics like function complexity (FC), program complexity
(PC), object relation measure (ORM) and class relation
measure (CRM) to calculate the spatial abilities of object-
oriented program [9]. But there was no consideration of
architectural complexity (cognitive weights). Due to that in
2009 Gupta and Chhabra found new metrics to calculate the
complexity of a program with regards to two aspects [10];

 Spatial aspect – using LOC

 Architectural aspect – using cognitive weights

Here Gupta and Chhabra have categorized the cognitive
spatial complexity metrics of object-oriented software as Fig.
2.

Fig. 2. Categories in measures of cognitive-spatial complexity of
object- oriented software

This is a very good measure to indicate the cognitive effort
needed to understand the program. Disadvantages of these
metrics are; language dependency, difficulty that arises when
calculating since it has a lengthy calculation process and it
needs a considerable theoretical basis and technology
knowledge.

In 2011, Koyuncu, Misra and Akman introduced a new
measure to calculate the full code complexity considering the
inheritance positions and the interior architecture of the code
since the traditional metrics which tried to calculate the
complexity of the object-oriented programming codes had the
following issues [11

 Not acknowledging the interior architecture of the
code and object-oriented concepts

 Not considering cognitive aspects

 Not being able to cover some theoretical and
mathematical approaches

 Not being hugely based on implementation technology

 Not being able to measure the absolute complexity of
a code acknowledging the inheritance positions and
cognitive aspects in sync.

This measure has become prohibitive to appoint upper and
lower bounds for complexity values. Since this method
provides complexity values in the numerical format, it can be
a large number for very lengthy codes. High values of
complexities are undesirable. As a result of these issues
Chhillar and Bhasin came up with a metric called new
weighted complexity metric (WCM) in 2011 [12]. Chhillar
and Bhasin acknowledged the following factors as Fig. 3, in
order to propose a new metric.

Fig. 3. Considered factors for WCM

In 2015, with confiding these circumstances Hussien,

Jararweh, Shehab, Alandoli and Tashtoush came up with a
new measure which concerns six elements that causes
emergence of the program/system complexity [13]. Those six
elements are indicated in Fig. 4. Out of these six, first two
elements are extracted from the previously proposed
approaches. In generating flow charts these authors followed
the footsteps of Thomas J. McCabe in developing flow charts
in Cyclomatic Complexity (CC) but assigned the weights as
different from CC but same as Shao and Wang’s measure.
When calculating the operations in the program authors
adopted the approach of Halstead volume. Other four factors
are proposed by the authors in order to boost the accuracy of
the complexity calculation.

A very strong advantage of the new measurement is that
it depreciates the detriments of previous metrics and the
disadvantages are that it does not consider the complexity that
arises due to the objects created in the class and thus requires
considerable theoretical basis and implementation
technological knowledge.

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

40

Fig. 4. Factors considered in the new metric

Sanjay Misra et al. (2018) published a paper on Object

Oriented Cognitive Complexity Metrics and the authors have
proposed a metric suite which covers some important features
of object-oriented programing [14]. They have analyzed the
literature and extracted some distinct features for the new
metric. There are five essential metrics that exist within this
suite;

 Class Complexity (CLC)

 Attribute Complexity (AC)

 Message Complexity (CWC)

 Method Complexity (MC)

 Code Complexity (CC)

This proposed metric suite considers the object-oriented
concepts like inheritance, coupling and cohesion.

In 2019, Hussam, Hiba and Tharmer came up with a new
model called The 2O2C model to calculate the complexity of
object oriented programs [15] The authors have acquired some
attributes from the literature including: NOC, DIT, COM and
CBO. Other than these four, detailed class complexity and
weighted class complexity have been considered by the
proposed metric model. 2O2C metric model mainly focuses on
attaining consistency, reusability, readability, extensibility,
maintainability and understandability. Abstraction and
encapsulation are the main two object-oriented concepts that
were considered in this metric model.

As mentioned, the count of operands and operators, control
structures, cognitive weights, nesting levels and object-
oriented programing concepts like inheritance, polymorphism,
and abstraction should be considered during the complexity
calculation of an object-oriented program. Previously found
metrics have not been able to consider all these parameters
together in calculating complexity of an object-oriented
program.

III. PROPOSED WORK

Even though there are number of metrics which calculate
the complexity of object-oriented programs, they only
consider one or two object-oriented concepts for the metric. As
a result, there is not any single metric which has the capability
of measuring the complexity of a program based on most of
object-oriented concepts. This research is to build a new metric
called Modified Cognitive Complexity Metric to calculate the
complexity of a given object-oriented program considering
more concepts of object-oriented programing such as,

 Counting ELOC for the size attributes other than
operators, operands and strings

 Polymorphism and Abstraction

 Coupling and Cohesion

 Inheritance

 Encapsulation

A. Counting ELOC for the size attribute

Here, in order to calculate the size of any program, the
authors have considered the calculation process of a size
attribute of WCM [12]. Size is a very strong factor in
measuring complexity in a system or module, because it is very
simple to understand that the programs which are massive in
size are more difficult to comprehend than the programs which
are small. In fact, the size attribute plays a critical role in
measuring complexity. There are number of ways to measure
the size of a program/ module:

 By directly counting Lines of Code (LOC)

 By counting the number of operators, operands and
strings in each program

 By counting the number of methods and classes in
each module

 By measuring the distance between variable and
method declarations and usages.

When it comes to counting the number of operators,
operands and strings in each program, it requires the user to
know the difference between operators, operands and strings.
In addition, this approach requires the user to go through each
element in the program which is highly time-consuming.
Counting the number of methods and classes is not a very
strong method in measuring the size of the program, because
there can be modules which contain only one method, but that
contains many LOC which is more complex. Measuring the
distance between variable, method declarations and usages
also have several disadvantages such as, the user is expected
to remember the position of a declaration of a certain variable
and the positions (calling statements) of using that variable or
method. Thus, this method is also very tedious and time
consuming. In comparison, directly counting the LOCs
approach is very much simpler and less time consuming as the
user is just required to count the number of lines of code in a
certain block of code. Thus, the author decides to measure the

size of a program by counting the LOC in it. But there are
various ways of counting LOC of a program. Those can be
described as follows.

 Number of physical lines – Counting the lines of the source
code of program including comment lines

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

41

 Number of blank lines – Counting only the blank lines in
the given program

 Number of logical lines – Counting only the lines which
are executable statements

 Number of eLOC – Counting the lines of the source code
of program excluding blank, comment lines and lines
which include only parenthesis.

 Sum of lines of code – Getting the sum of physical lines
and blank lines

 Number of executable physical – Getting the total lines of
source code excluding the blank lines and comment lines

 Number of executable logical – Counting the number of
executed statements inside the given program or module

 Number of comment lines – Counting the number of
comment lines

 Number of comment words – Getting the count of
comment words in the program

Since eLOC eliminates lines which contain only a bracket
and count every other line excluding comments and blank
lines, eLOC can be taken as the replacement for size attribute.
Since counting eLOC is easier than counting operators,
operands and strings, that can be proposed for the size
attribute. In order to calculate the size of any given program,
counting the number of eLOC can be considered in Modified
Cognitive Complexity Metric (MCCM).

B. Polymorphism and abstraction

Polymorphism is a main concept of object. This feature can
be called as when one method has multiple implementations,
for a certain class of action. The most popular way in using
polymorphism in object-oriented programing, where a child
class object is referred by a parent class reference.
Polymorphism can be further described by considering its two
main parts:

 Static polymorphism [Overloading] - Static polymorphism
also called early binding, compile time binding, because it
happens during the compile time. This feature says that a
class can have more than one method with the same method
name, if their argument lists are different. When someone
is referring to a code, this object-oriented feature makes it
hard to understand the code for the person. Thus the person
may get confused to identify the method that called.

 Dynamic polymorphism [Overriding] - Dynamic binding
is also called late binding and runtime binding, since it
happens during the run time of a program. Overriding of a
program refers when implementing a method in subclass
which is already present in the relevant parent class. A
person who will read the code may get slightly confused
with this situation.

A class can be called as an “abstract class”, when it
contains one or more abstract methods. When a method is
declared without any implementation details, it is called as “an
abstract method”. Abstract classes may not be instantiated and

require subclasses to provide implementations for the abstract
methods. It is somewhat hard to understand an abstract method
than a normal method. This is because in parent class there are
no any implementations for abstract methods. There can be
different implementations for different child classes. Taking
these three problems into account, in order to measure these
complexities, a new factor can be proposed, which is Wo. The
above two situations can be considered by adding value of one
to the Wo factor for a statement which calls an overloaded or
overridden or abstract method. Other than those two situations,
in overloading it should add value of one to the Wo factor for
a statement which is an overloaded method declaration
excluding the first method declaration.

C. Coupling and cohesion

Coupling and cohesion interact with the quality of an
object- oriented design. Commonly, a good object-oriented
design must be highly cohesive and loosely couple. This type
of system is easy to develop, add new features, maintain and is
less fragile.

Coupling can be described as the relationships between
modules. A decrease in interconnections between classes (or
modules) is therefore accomplished via a decrease in coupling.
Coupling is categorized into many types according to the
reasons that can arise between modules. Those can be listed as
in TABLE I, in the order of complexity (Lower to highest)
Cohesion is a measure that can be used to specify the degree
to which a class has a well-focused or single purpose.
Cohesion mainly emphasizes how a single class is designed. A
better object-oriented design holds a high cohesion. There are
9 levels of cohesion as in TABLE II (Better to worst).

In order to acknowledge the complexities of above
categories of coupling and cohesion, a new attribute, Wcc
should be introduced, where the value of Wcc can be taken
from the TABLE I and TABLE II.

TABLE I. SUGGESTED WEIGHTS ACCORDING TO

COUPLING TYPES

Coupling Type Weight [Wcc]

Data coupling 1

Stamp coupling 2

Control coupling 3

Common coupling 4

Content coupling 5

TABLE II. SUGGESTED WEIGHTS ACCORDING TO COHESION
TYPES

Cohesion Type Weight[Wcc]

Functional 1

Informational 2

Sequential 3

Communicational 4

Procedural 5

Temporal 5

Logical 5

Coincidental 5

D. Inheritance

Chhillar and Basin computed the complexity that arises
due to different levels (nesting levels) of inheritance of classes

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

42

using Wi. But in object-oriented programming there are
different types of inheritance (Fig. 5) which can be identified.
That situation is not acknowledged in WCM. The different
types of the inheritance can be listed as follows:

 Single inheritance: A class can extend only a single class.

 Hierarchical inheritance: One single base class can create
more than one derived classes.

 Multilevel inheritance: One derived class is created from
another derived class.

 Multiple inheritance: One class inherits from more than
one base class.

 Hybrid inheritance: This is a mixture of any of the above
inheritances (single, hierarchical and multilevel) which
can be called as hybrid inheritance

Based on the complexity level of the inheritance types,
weights are assigned (TABLE III). Here in the traditional
calculation process of WCM, it allocates a weight for class
inheritance level as; level 1 = 1, level 2 =2 and level 3 = 3,
but it does not consider about these inheritance types. In order
to acknowledge both these two factors, Wi attribute can be
used as follows.

Wi = weight due to inheritance level * weight due to
inheritance type

TABLE III. SUGGESTED WEIGHTS ACCORDING TO
INHERITANCE TYPES

Inheritance Type Weight [Wty]

Single 1

Multilevel 1

Hierarchical 2

Multiple 3

Hybrid 4

 Fig. 5. Different types of inheritance

E. Encapsulation
The process of packing the variables (data) and code

performing on the variables (functions) together as a single
unit is called as encapsulation in object-oriented
programming. In here the variables declared I a one class will
be not exposed to any other classes and cannot be accessed by
any other function which is not in the current class. Because
of that this concept is also called data hiding. In order to

achieve data hiding in object-oriented programing, following
two ways can be used.

 Declaration of variables in a class should be private.

 Deliver public getter and setter functions to view and
change the variable values.

To consider this concept in calculating complexity,
authors have decided to introduce a new variable called We.
The statements which declare the variables as private and the
statements which contain the public getter and setter functions
declarations should allocate a value of one for the We
attribute.

Assuming these 5 factors total weight of a single line can
be proposed as follows.

 W = Wi + Wc + Wo + Wcc + We (1)

Wi - Weight due to the inheritance, Wc - Weight due to
the type of BCS * Weight for nesting level of BCS, Wo -
Weight due to abstraction and polymorphism, Wcc-Weight
due to coupling and cohesion, We - Weight due to
encapsulation.

Then considering the line by line calculation for the
weights, complexity of the entire code can be taken by
following formula;

Here it gets the log value, in order to eliminate

receiving large numeric values for lengthy programs.

IV. RESULTS

 Weyuker has established a formal list of properties (nine
properties) in order to estimate the accuracy of software
metrics. It has been used to evaluate numerous existing
software metrics and it is not mandatory to that all nine
properties should be satisfied by the metrics. This framework
is used by many object-oriented metrics and is theoretically
validated.

A. Property 1:(∃P)(∃Q)(|P | = |Q|)
Where P and Q are two disparate classes

 This condition claims that a metric should not rank all
programs as similarly complex. Since the considered two
programs have totally different internal structures from each
other and the formula giving two disparate values for MCCM,
the condition is satisfied by this measure.

B. Property 2: Let c be a nonnegative value and then there

are only finitely many programs of complexity c.

 Every object-oriented programing (OOP) language

contains only finite count of variables, methods, cognitive

weights of basic control structures (BCS) and classes.

MCCM depends on the weight of inheritance, type of BCSs,

variables, encapsulation, abstraction, coupling, cohesion and

eLOC; where all these factors are finite length program.

Therefore, MCCM satisfy property 2.

C. Property 3: There are P and Q distinct programs such

that (∃P)(∃Q)(|P | = |Q|)

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

43

 Here condition 3 says that there can be classes with the
equal complexity value. When considering MCCM there can
be multiple classes containing the same MCCM. Hence this
property is satisfied by MCCM.

D. Property 4: (∃P)(∃Q)(P ≡ Q and |P |=|Q|)

 This 4th property states that even though two programs
compute the same function, it is the details of the
implementation that determine the program’s complexity.
Even though the functionalities of two programs are equal, the
complexity of the programs is based on the implementation
body of the program. Because of that MCCM holds the
property 4.

E. Property 5: (∀P)(∀Q) (|P | ≤ |P ; Q| and |Q| ≤

|P ; Q|)

 Modified cognitive complexity measure collaborates with
weight of inheritance, type of BCSs, variables, encapsulation,
abstraction, coupling, cohesion and eLOC which are always
integers. Thus the sum of integers is always a non-negative
integer. Additionally, it is true for all non-negative integers P
and Q that: (Q ¡ P + Q) and (P ¡ P + Q). This confirms that
raised elements of MCCM are comparable to Weyuker’s 5th
property. Since condition 5 is fulfilled by the MCCM measure.

F. Property 6:

6a: (∃P)(∃Q)(∃R)(|P | = |Q|) and |P ; R| ≠ |Q ; R|

6b: (∃P)(∃Q)(∃R)(|P | = |Q|) and |R; P | : |R ; Q|

 These properties state that if there are two programs P and
Q with same complexities and when they are combined with
the same third program R, combined programs should be
varied. In composite complexity measure the complexity of
the program depends on the number ELOC and the cognitive
weights which are not going to change due to the program
combination. But it also considers the way of making the two
programs interact which may differentiate the complexities of
two combined programs. As an example, P program calls the
R in a sequence statement (where; Sj * (Wt)j can be 0) and
Q program can call the R program inside a for loop (where; Sj
* (Wt)j can be 0) which may increase the complexity than the
previous situation. Due to this reason MCCM satisfies this
property of Weyuker’s.

G. Property 7: There can be P and Q program bodies
such that Q is designed by permuting the order of

the statements of P, (|P | =|Q|)

 In Object-oriented programming, changing the sequence
of attribute, method declarations or order of statements do not
influence the order of execution. As a result, the proposed
measure does not satisfy this property.

H. Property 8: If P is renaming of Q, |P | = |Q|

 This property states that the complexity of a class P does
not change even it changes the class name. Changing the class
name will not affect the token count or cognitive weights of
the BCS s. Since it does not affect MCCM measure, this
property is also satisfied.

I. Property 9: (∃P)(∃Q)(|P | + |Q|) < (|P ; Q|)

This condition states that the addition of complexities of

two separate classes is lower than the complexity of a class

which is created by joining those two separate classes.

Usually, two classes can have a finite number of unique

functions with some cognitive weights. A combined class

of the two individual classes would result in one class’s

version of the unique methods becoming redundant.

Therefore, the complexity of the combined class in terms of

cognitive weight reduces. Because of this situation this

condition is not fulfilled by MCCM metric.

According to the above explanation, modified cognitive

complexity measure satisfies all the properties of

Weyuker’s framework excluding 7th and 9th.

V. CONCLUSION AND FUTURE WORK

Object-oriented programming makes the software

development easy and more convenient by having the

following expediencies over other approaches.

 Providing a fair modular structure for programs

 Creating new objects with slight differences to

actual ones, which makes easy to maintain and

change the existing code

 Providing an excellent framework for code

libraries.

 Large number of OO complexity metrics have been
introduced with the enlargement in the demanding of the
object-oriented programming. These metrics can be used to
measure the readability, accuracy and maintainability of the
software. But there is not any single metric which addresses
most of the object-oriented concepts. Thus, this research is
conducted to build a new metric called modified cognitive
complexity metric to improve the readability of the object-
oriented software as follows.

This new metric gives the number of advantages as follows;

• Considers most of the object-oriented concepts

within a single metric

• Considers the size attribute (spatial quality) as well.

• Easy to calculate.

• Can be used to improve the readability,

maintainability of the program by reducing the

complexity value.

Software metrics can be applied to measure an
application or define specifications in order to provide ease
for readability, maintainability, analyzing and modifying the
above areas. The data gained by the software metrics can be
used in numerous ways in order to benefit the organizations
such as budget planning, risk management, scheduling and
software quality as a complex IT infrastructure expands or
changes.

The information gained from the software metrics
collection process helps organizations to improve
scheduling, budget planning, cost estimation, software
quality, and risk mitigation as a complex IT infrastructure
enlargement or changes. Following points can be taken as the
future developments of this research.

Smart Computing and Systems Engineering, 2020
Department of Industrial Management, Faculty of Science, University of Kelaniya, Sri Lanka

44

 Polish the formula in order to consider compound
conditional statements

 Normal method calls and recursive method calls

 Automate the calculation processes

REFERENCES

[1] Uk.Ijeacs “Software complexity measurement: A critical
review.”,International Journal of Engineering and Applied Computer
Science (IJEACS), 01:12–16, 12 2016.

[2] A. Madi, O.K. Zein, and S. Kadry. “On the improvement of
cyclomatic complexity metric”, International Journal of Software
Engineering and its Applications, 7:67–82, 01 2013.

[3] Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love.
“Measuring the psychological complexity of software maintenance
tasks with the halstead and mccabe metrics”, IEEE Transactions on
Software Engineering, SE-5(2):96–104, March 1979.

[4] “IEEE standard for a software quality metrics methodology”, IEEE Std
1061-1998, pages i–, Dec 1998.

[5] Thaku. Software Metrics in Software Engineer- ing.
http://ecomputernotes.com/software-engineering/software-metrics,
[Accessed: 12-06-2019].

[6] Douce and P. Layzell. “Spatial measures of software complexity”, 04
1999.

[7] K. Chhabra, K.K. Aggarwal, and Y. Singh. “Measurement of object-
oriented software spatial complexity”, Information and Software
Technology, 46(10):689 – 699, 2004.

[8] Misra. “An object-oriented complexity metric based on cognitive
weights”, In 6th IEEE International Conference on Cognitive
Informatics, pages 134–139, Aug 2007.

[9] S. Misra and I. Akman. Weighted class complexity: A measure of
complexity for object-oriented system. J. Inf. Sci. Eng., 24:1689–1708,
11 2008.

[10] Gupta and J. Chhabra. Object-oriented cognitive-spatial complexity
measures. 01 2009.

[11] S. Misra, I. Akman, and M. Koyuncu. An inheritance complexity
metric for object-oriented code: A cognitive approach. c Indian
Academy of Sciences, 36:317–337, 07 2011.

[12] U. Chhillar and S. Bhasin. A new weighted composite complexity
measure for object-oriented systems. 2011.

[13] Mohammed, Shehab, M.Yahya, Tashtoush, Wegdan A. Hussien,
N.Mohammed , Alandoli, Yaser, and Jararweh. An accumulated
cognitive approach to measure software complexity. 2015.

[14] S. Misra, A.Adewumi, L. Fernandez-Sanz, and R. Damasevicius. A
suite of object-oriented cognitive complexity metrics. IEEE Access,
6:8782–8796, 2018.

[15] Hourani, H. Wasmi, and T. Alrawashdeh. A code complexity model of
object-oriented programming (oop). In 2019 IEEE Jordan International
Joint Conference on Electrical Engineering and Information
Technology (JEEIT), pages 560–564, April 2019

.

http://ecomputernotes.com/software-engineering/software-metrics

