A Key Model to Provide Required Information at Farming Life Cycle of Crop Production Through A Real-Time Mobile-Based Application

Mohamed, M. S. A.¹, Wathugala, D. L.², Indika, W. A.³, Madushika, M.K.S.⁴, Gunawardana, D. A. Y. K.⁵

Introduction

Agriculture plays an essential role in the developing countries and is the backbone of the Sri Lankan financial system with a large number of small holdings and rural farmers (Chhachhar and Hassan, 2013; Potts, 2016). Farmers face many difficulties relating to low production, marketing, and agribusiness (Henegedara. G.M, 2015). In the digitally connected era, people are given their maximum effort to address the challenges. But the current Gross Domestic Product (GDP) from agriculture in Sri Lanka (7.4%) indicates a diminishing value (DCS, 2019) due to the designed ICT platforms which focused on a limited area of crop production instead of the whole process. Therefore, farmers require context-specific, complete and actionable information to make timely-quality decisions (Ginige et al., 2016).

Identification of the factors/parameters/conditions that influence the whole farming lifecycle of crop production is vital for farmers in order to take crucial steps. Hence, mobile phones play an important role in solving collective action problems. Further, speeding up the information which is conveyed to the farmers help them to take decisions much more easily (Cieslik et al., 2018; Nyamba and Mlozi, 2012).

This research contributes to identify the factors that impact on the different farming lifecycle stages of crop production and to develop a model that can be effectively addressed through the Govi-Nena mobile-based application (www.govinena.lk).

Methodology

This study was carried out in the districts of Badulla, Nuwara Eliya, Jaffna, and Monaragala in Sri Lanka and collected agricultural information/knowledge from domain experts (experienced farmers, agriculture instructors, and research officers) through interviews using a pre-tested structured questionnaire and secondary sources. The Design Science Research (DSR) methodology was used; a constructive research

method which generates an innovative artifact as a research output (Hevner et al., 2004).

¹ Department of Crop Science, Faculty of Agriculture, University of Ruhuna. (*msakeelm21@gmail.com*)

² Department of Crop Science, Faculty of Agriculture, University of Ruhuna (*wgdlakmini@crop.ruh.ac.lk*)

³ Department of Computer Science, Faculty of Science, University of Ruhuna (*waindika@dcs.ruh.ac.lk*)

⁴ Department of Computer Science, Faculty of Science, University of Ruhuna (madushika@dcs.ruh.ac.lk)

⁵ Department of Computer Science, Faculty of Science, University of Ruhuna (*yashithgunawardana@gmail.com*)

Hence, to provide contextual information to the farmers, conditions/parameters/factors for each stage of the crop farming lifecycle were identified using DSR and modeled those factors and sub-factors as the Packages of Practice (PoP). We verified and redesigned the developed model based on the need assessment of domain experts. The ontological crop knowledge base is used to store the PoPs and the model is fed through a mobile-based platform. According to the user requests, the information and knowledge is acquired from the knowledge base.

Findings

The study revealed that poor yield, gathering real-time accurate information in the correct format and low quality of agro-technology are the key challenges for farmers. Hence, the factors for the stages in the crop farming lifecycle (Crop/variety selection, pre-planting, growing, harvesting, and post-harvesting) consisted of sub-factors which were identified (Table 1) and arranged in a package of practices for a real-time mobile-based information system (Fig 1). For instance, farmers will be able to get information and reminders based on the sowing date of the crop such as crop selection according to the soil and climatic factors of the area, date and rate of application of fertilizers, herbicides, recommend pesticides, and weather alerts, etc.

Farming life cycle stages	PoP Depend on			
	Factors	Sub-factors	Sub-sub factors	
Crop/variety	Agro-	Climate		
selection	ecological	Soil characteristics	Soil pH	
	zones		Soil moisture content	
			Soil texture	
			Soil type	
		Location specific	Pest & Disease incidence	
		characters	Extreme weather conditions	
	Previously			
	grown crop			
	Cropping	Field planting		
	system	Protected agriculture		
	Input needs	Input types	Water (Rainfed, Irrigation system	
			Planting material	
			Labour/ machinery	
			Agro-chemicals (Amount needed,	
			Availability, Types, Application	
			rate, Time of application)	
		Market price		
		Economic status of		
		farmers		
	Cultivation	Maha		
	season	Yala		

Table 1: Key model for farming life cycle stages of crop production

International Conference on Business and Information (ICBI) 2020 Faculty of Commerce and Management Studies, University of Kelaniya, Sri Lanka

		D		
		Perennial		
	Market	Market price	~ .	
	demand	Product purpose	Seed	
			Consumption	
	<u> </u>	Preferences		
	Supporting service	Training & guidance		
		Subsidies		
		Certificates		
	Financial	Agri-loan		
	service	Agri-insurance		
Pre-planting	Land	Soil characteristics		
	preparation	Availability of water		
		Extent		
	Fertilizer application	Crop/variety		
		Planting time		
		Quantity		
		Location		
		Method of application	Broadcasting	
			Localized placement	
		Soil type	Soil pH	
		Som type	Nutrient availability	
		Fertilizer type	Organic	
			Inorganic	
	P & D	Crop/variety		
	management	Weather pattern		
		Prevention method	Mechanical	
			Chemical	
			Biological	
	Weed	Weed type	Weeding method	(manua
	management	weed type	Chemical)	(manua
Growing	Fertilizer	Crop/variety	Amount	
orowing	application	Crop, variety	Time of application	
	upplication	Irrigation type	Rainfed	
			Irrigation systems	
		Fertilizer type	Organic	
		i entilizer type	Inorganic	
		Application method	With irrigation water	
		rppreation method	Direct application to soil	
			Foliar application	
			Broadcasting	
			Placement	
		Soil type	Theement	
	P & D	Weather		
		Control method	Mechanical	
	management		Chemical	
			Biological	
	Weed	Cron/variaty	Diological	
		Crop/variety Weed type	Weeding method	(manua)
	management	weed type	Weeding method Chemical)	(manual
	. <u></u>		Circilical)	

International Conference on Business and Information (ICBI) 2020 Faculty of Commerce and Management Studies, University of Kelaniya, Sri Lanka

Crop-specific	Earthing up
practices	Pruning
	Vine training
	Trellising
	Artificial pollination
Crop/variety	Stage of harvesting
1 5	Method of harvesting
	Frequency of
	harvesting
	Market demand
Weather	
Crop/variety	
Seeds	Extraction
	Treatment
	Storage
Direct	Packaging
consumption	Durability
	Storage
	Transport to market
Other uses	Product specific
	process
	Storage condition
	Transport
	practices Crop/variety Weather Crop/variety Seeds Direct consumption

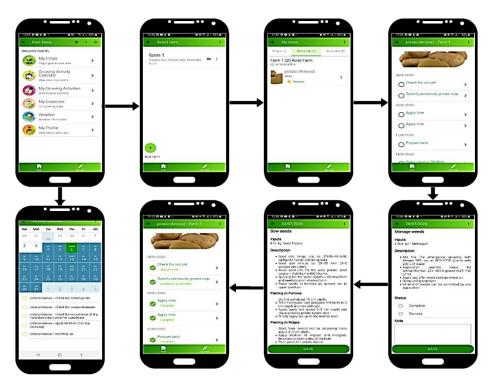


Fig 1: User interfaces designed for the packages of practice

74

International Conference on Business and Information (ICBI) 2020 Faculty of Commerce and Management Studies, University of Kelaniya, Sri Lanka

Conclusion

Context-specific and actionable information is required for the farmers to get a better decision for effective farming. The proposed model is consisted of identified factors which impact the stages of the farming lifecyclreferencee and is represented through a mobile-platform that is connected to the crop knowledge base.

Keywords: Challenges For Farmers In The Agriculture Domain, Farming Life Cycle Of Crop Production, Model For Pops, Real-Time Mobile Application, Sources Of Agricultural Information.

This research was supported by the Accelerating Higher Education Expansion and Development (AHEAD) Operation of the Ministry of Higher Education funded by the World Bank.

References

- Chhachhar, A. R., and Hassan, M. S. (2013). Information Communication Technology for Agriculture Development. *Journal of American Science*, 9(1), 55–60.
- Cieslik, K. J., Leeuwis, C., Dewulf, A. R. P. J., Lie, R., Werners, S. E., Wessel, M. V., Feindt, P. and Struik, P. C. (2018). Addressing socio-ecological development challenges in the digital age: Exploring the potential of Environmental Virtual Observatories for Connective Action (EVOCA). NJAS - *Wageningen Journal of Life Sciences. Elsevier.* 86–87, pp. 2–11. doi: 10.1016/j.njas.2018.07.006.

Department of Census and Statistics (DCS), Sri Lanka, 2019.

Ginige, A., Walisadeera, A. I., Ginige, T., De Silva, L., Di Giovanni, P., Mathai, M.,
Goonetillake, J., Wikramanayake, G., Vitiello, G., Sebillo, M., Tortora, G.,
Richards, D. and Jain, R. (2016). Digital knowledge ecosystem for achieving
sustainable agriculture production: A case study from Sri Lanka. *Proceedings -*3rd IEEE International Conference on Data Science and Advanced Analytics,
DSAA 2016, 602–611. https://doi.org/10.1109/DSAA.2016.82.

International Conference on Business and Information (ICBI) 2020 Faculty of Commerce and Management Studies, University of Kelaniya, Sri Lanka

- Henegedara., G. M. (2015). Information and Communication Technology (ICT) and Rural and Agricultural Development in sri lanka. First International Conference on Theory and Practice (ICTP).
- Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design Science in Information Systems Research. *MIS Quarterly Journal*, 28(1), 75–105.
- Nyamba, S. Y., and Mlozi, M. R. S. (2012). Factors Influencing the Use of Mobile Phones in Communicating Agricultural Information: A Case of Kilolo District, Iringa, Tanzania. *International Journal of Information and Communication Technology Research*, 2(7), 558–563.
- Potts, H. S. R. R. D. J. (2016). A Study on Entrepreneurial Attitudes of Upcountry Vegetable Farmers in Sri Lanka. *Journal of Agribusiness in Developing and Emerging Economies*, 6, 1–20.