

DEVELOPMENT OF COPPER OXIDES AND COPPER INDIUM DISULPHIDE

BASED SOLAR CELLS USING ELECTRODEPOSITION TECHNIQUE

Submitted by

KALUBOWILAGE DON RUWAN NILANTHA KALUBOWILA

(FGS/06/02/06/2012/02)

ලවෙය ආංසාය:	1285
වර්ග අංසය:	

A thesis submitted to the Faculty of Graduate Studies, University of Kelaniya

in fulfillment of the requirement for the degree of

Master of Philosophy in Physics

April - 2016

Abstract

Cuprous Oxide (Cu₂O) is a highly researched material in the field of semiconducting devices. It is naturally abundant, non-toxic, low cost material having a high absorption coefficient and favorable spectral response in the visible range, which is suitable as a window material for solar cells. In this study, preparation of Cu₂O, (Cu₂O)_{1-x}(CuO)_x, CuO and CuInS₂ for fabrication of (Cu₂O)_{1-x}(CuO)_x/Cu₂O, CuO/Cu₂O and CuInS₂/Cu₂O heterojunction solar cells are presented. X-ray diffraction, scanning electron microscopy, optical absorption and mott-schottky plot were used to study the material. Photoresponse measurements, dark and light current-voltage measurements and spectral response measurements were used to study the optical behavior of material and junction devices. (Cu₂O)_{1-x}(CuO)_x/Cu₂O and CuO/Cu₂O solar cell devices are very limited and CuInS₂/Cu₂O device has not been reported in the literature. Cu₂O films were electrodeposited in acetate bath at potential -200 mV Vs SCE. Cu₂O deposited in acetate bath exhibits existence of both n-type and p-type conductivity in photoelectrochemical cell (PEC) and this p-type behavior causes the reduction of overall performance of the devices. This effect can be minimized by introducing Cu layer prior to the deposition of Cu₂O. Deposition duration of the Cu layer improves the n-type conductivity and the highest improvement was observed at the Cu deposition duration of 5 min. The p-type Cu₂O were electrodeposited in lactate bath at the pH around 12 and the potential of -450 mV Vs SCE.

The $(Cu_2O)_{1-x}(CuO)_x$ composite thin films were grown by annealing the Cu_2O thin film in air at 400 °C for 15 min. It shows the band gap energy value of 1.8 eV and has the p-type conductivity. The p- $(Cu_2O)_{1-x}(CuO)_x/n$ - Cu_2O heterojunction solar cell was successfully fabricated by subsequently electrodeposition of Cu_2O thin film on $(Cu_2O)_{1-x}(CuO)_x$ composite thin film at the potential -500 mV Vs SCE in acetate bath. The Ti/p- $(Cu_2O)_{1-x}(CuO)_x$ $(CuO)_x/n$ - Cu_2O/Au solar cell device was fabricated by sputtering a Au grid on top of Cu_2O . Resulting solar cell outputs are V_{OC} of 340 mV and J_{SC} of 1.52 mA/cm² under the AM 1.5 artificial illumination. The device had a fill factor of 0.247 and an efficiency of 0.127 %.

Anodic electrodeposition of p-type CuO on Ti substrate was potentiostatically carried out in lactate. Deposition potential of 700 mV and bath pH of 12.5 was found by employing the linear sweep voltammetry curves. The p-CuO/n-Cu₂O heterostructure were successfully fabricated by electrodepositing n-type Cu₂O on Ti/CuO electrode in acetate bath at the potential -200 mV Vs SCE. Ti/p-CuO/n-Cu₂O/Au structure was fabricated by sputtering Au grid on the Ti/p-CuO/n-Cu₂O surface. The best Ti/p-CuO/n-Cu₂O/Au heterojunction solar cell produced V_{OC} of 300 mV and J_{SC} of 2.63 mA/cm² under AM 1.5 artificial illumination. The cell had a fill factor of 0.166 and an efficiency of 0.131%.

The CuInS₂ thin films were prepared by sulphurisation of Cu-In alloy on Ti substrate. Single-phase polycrystalline CuInS₂ can be obtained by optimizing the Cu/In ratio in the Cu-In alloy films. The best n-type photoactivity was obtained when the atomic ratio of Cu/In at 0.7. The Ti/Cu/In films were annealed at 130 °C for 4 hours in air to form Cu-In alloy. Sulphurisation of Cu-In alloy was carried out at 500 °C for 30 min in 100% H₂S gas with a constant flow rate. The n-type CuInS₂/p-type Cu₂O heterojunction was fabricated by electrodepositing p-Cu₂O on Ti/CuInS₂ electrode in lactate bath at the potential -450 mV Vs SCE. Au was sputtered on Ti/CuInS₂/Cu₂O thin film to fabricate the Ti/n-CuInS₂/p-Cu₂O/Au device. But device characteristic was not obtained due to the poor photoactive property. Therefore this will be subjected to future studies. This study shows the possibility of fabricating low cost environment friendly p-(Cu₂O)_{1-x}(CuO)_x/n-Cu₂O, p-CuO/n-Cu₂O and n-CuInS₂/p-Cu₂O heterojunction solar cell devices for photovoltaic applications.

Keywords: Cuprous Oxide; Electrodeposition; Thin film; Spectral Response; Sulphurisation